Class ProjectionFactory
Defined in File ProjectionFactory.h
Class Documentation
-
class ProjectionFactory
Public Functions
-
ProjectionFactory() = default
-
ProjectionPtr makeProjection(const base::SpaceInformationPtr &Bundle, const base::SpaceInformationPtr &Base)
Guess projection(s) between two SpaceInformationPtr Bundle and Base.
-
ProjectionPtr makeProjection(const base::SpaceInformationPtr &Bundle)
Protected Functions
-
ProjectionPtr makeProjection(const base::StateSpacePtr &BundleSpace, const base::StateSpacePtr &BaseSpace, bool areValidityCheckersEquivalent)
-
ProjectionPtr makeProjection(const base::StateSpacePtr &BundleSpace)
-
ProjectionType identifyProjectionType(const base::StateSpacePtr &BundleSpace, const base::StateSpacePtr &BaseSpace)
Guess the projection type from the list of projections in ompl::multilevel::ProjectionTypes.
-
bool isMapping_Identity(const base::StateSpacePtr&, const base::StateSpacePtr&)
Check if the mapping is an identity mapping.
-
bool isMapping_EmptyProjection(const base::StateSpacePtr&, const base::StateSpacePtr&)
Check if the mapping is an empty projection.
-
bool isMapping_RN_to_RM(const base::StateSpacePtr&, const base::StateSpacePtr&)
Check if mapping is \( \mathbb{R}^N \) to \( \mathbb{R}^M \).
-
bool isMapping_SE2_to_R2(const base::StateSpacePtr&, const base::StateSpacePtr&)
Check if mapping is \( \mathrm{SE}(2) \) to \( \mathbb{R}^2 \).
-
bool isMapping_SE2RN_to_R2(const base::StateSpacePtr&, const base::StateSpacePtr&)
Check if mapping is \( \mathrm{SE}(2)\times \mathbb{R}^N \) to \( \mathbb{R}^2 \).
-
bool isMapping_SE2RN_to_SE2(const base::StateSpacePtr&, const base::StateSpacePtr&)
Check if mapping is \( \mathrm{SE}(2)\times \mathbb{R}^N \) to \( \mathrm{SE}(2) \).
-
bool isMapping_SE2RN_to_SE2RM(const base::StateSpacePtr&, const base::StateSpacePtr&)
Check if mapping is \( \mathrm{SE}(2)\times \mathbb{R}^N \) to \( \mathrm{SE}(2)\times \mathbb{R}^M \).
-
bool isMapping_SE3_to_R3(const base::StateSpacePtr&, const base::StateSpacePtr&)
Check if mapping is \( \mathrm{SE}(3) \) to \( \mathbb{R}^3 \).
-
bool isMapping_SE3RN_to_R3(const base::StateSpacePtr&, const base::StateSpacePtr&)
Check if mapping is \( \mathrm{SE}(3)\times \mathbb{R}^N \) to \( \mathbb{R}^3 \).
-
bool isMapping_SE3RN_to_SE3(const base::StateSpacePtr&, const base::StateSpacePtr&)
Check if mapping is \( \mathrm{SE}(3)\times \mathbb{R}^N \) to \( \mathrm{SE}(3) \).
-
bool isMapping_SE3RN_to_SE3RM(const base::StateSpacePtr&, const base::StateSpacePtr&)
Check if mapping is \( \mathrm{SE}(3)\times \mathbb{R}^N \) to \( \mathrm{SE}(3)\times \mathbb{R}^M \).
-
bool isMapping_SO2RN_to_SO2(const base::StateSpacePtr&, const base::StateSpacePtr&)
Check if mapping is \( \mathrm{SO}(2)\times \mathbb{R}^N \) to \( \mathrm{SO}(2) \).
-
bool isMapping_SO2RN_to_SO2RM(const base::StateSpacePtr&, const base::StateSpacePtr&)
Check if mapping is \( \mathrm{SO}(2)\times \mathbb{R}^N \) to \( \mathrm{SO}(2)\times \mathbb{R}^M \).
-
bool isMapping_SO2N_to_SO2M(const base::StateSpacePtr&, const base::StateSpacePtr&)
Check if mapping is \( \mathrm{SO}^N(2) \) to \( \mathrm{SO}^M(2) \).
-
bool isMapping_SO3RN_to_SO3(const base::StateSpacePtr&, const base::StateSpacePtr&)
Check if mapping is \( \mathrm{SO}(3)\times \mathbb{R}^N \) to \( \mathrm{SO}(3) \).
-
bool isMapping_SO3RN_to_SO3RM(const base::StateSpacePtr&, const base::StateSpacePtr&)
Check if mapping is \( \mathrm{SO}(3)\times \mathbb{R}^N \) to \( \mathrm{SO}(3)\times \mathbb{R}^M \).
-
bool isMapping_RNSO2_to_RN(const base::StateSpacePtr&, const base::StateSpacePtr&)
Check if mapping is \( \mathbb{R}^N \times \mathrm{SO}(2) \) to \( \mathbb{R}^N \).
-
bool isMapping_XRN_to_XRM(const base::StateSpacePtr&, const base::StateSpacePtr&, const base::StateSpaceType)
Check if mapping is \( X\times \mathbb{R}^N \) to \( X \times \mathbb{R}^M \) whereby \( X = \{\mathrm{SO}(2),\mathrm{SO}(3),\mathrm{SE}(2),\mathrm{SE}(3)\} \).
-
bool isMapping_XRN_to_X(const base::StateSpacePtr&, const base::StateSpacePtr&, const base::StateSpaceType)
Check if mapping is \( X\times \mathbb{R}^N \) to \( X \) whereby \( X = \{\mathrm{SO}(2),\mathrm{SO}(3),\mathrm{SE}(2),\mathrm{SE}(3)\} \).
-
int GetNumberOfComponents(const base::StateSpacePtr &space)
Estimate number of components on state space.
-
ProjectionFactory() = default