Namespaces | |
namespace | apps |
namespace | cloud_composer |
namespace | common |
namespace | ComparisonOps |
namespace | console |
namespace | detail |
namespace | distances |
namespace | features |
namespace | fields |
namespace | filters |
namespace | geometry |
namespace | ihs |
namespace | io |
namespace | ism |
namespace | keypoints |
namespace | modeler |
namespace | ndt2d |
namespace | occlusion_reasoning |
namespace | octree |
namespace | on_nurbs |
namespace | outofcore |
namespace | people |
namespace | poisson |
namespace | recognition |
namespace | registration |
namespace | search |
namespace | segmentation |
namespace | surface |
namespace | test |
namespace | texture_mapping |
namespace | tracking |
namespace | traits |
namespace | utils |
namespace | visualization |
Classes | |
struct | _Axis |
struct | _Intensity |
struct | _Intensity32u |
struct | _Intensity8u |
struct | _Normal |
struct | _PointNormal |
struct | _PointSurfel |
struct | _PointWithRange |
struct | _PointWithScale |
struct | _PointWithViewpoint |
struct | _PointXYZ |
struct | _PointXYZHSV |
struct | _PointXYZI |
A point structure representing Euclidean xyz coordinates, and the intensity value. More... | |
struct | _PointXYZINormal |
struct | _PointXYZL |
struct | _PointXYZRGB |
struct | _PointXYZRGBA |
struct | _PointXYZRGBL |
struct | _PointXYZRGBNormal |
struct | _ReferenceFrame |
A structure representing the Local Reference Frame of a point. More... | |
struct | _RGB |
class | AdaptiveRangeCoder |
AdaptiveRangeCoder compression class More... | |
class | AgastKeypoint2D |
Detects 2D AGAST corner points. Based on the original work and paper reference by. More... | |
class | AgastKeypoint2D< pcl::PointXYZ, pcl::PointUV > |
Detects 2D AGAST corner points. Based on the original work and paper reference by. More... | |
class | AgastKeypoint2DBase |
Detects 2D AGAST corner points. Based on the original work and paper reference by. More... | |
class | ApproximateVoxelGrid |
ApproximateVoxelGrid assembles a local 3D grid over a given PointCloud, and downsamples + filters the data. More... | |
class | ASCIIReader |
Ascii Point Cloud Reader. Read any ASCII file by setting the separating characters and input point fields. More... | |
struct | Axis |
A point structure representing an Axis using its normal coordinates. (SSE friendly) More... | |
class | BilateralFilter |
A bilateral filter implementation for point cloud data. Uses the intensity data channel. More... | |
class | BilateralUpsampling |
Bilateral filtering implementation, based on the following paper: * Kopf, Johannes and Cohen, Michael F. and Lischinski, Dani and Uyttendaele, Matt - Joint Bilateral Upsampling, * ACM Transations in Graphics, July 2007. More... | |
class | BivariatePolynomialT |
This represents a bivariate polynomial and provides some functionality for it. More... | |
class | BOARDLocalReferenceFrameEstimation |
BOARDLocalReferenceFrameEstimation implements the BOrder Aware Repeatable Directions algorithm for local reference frame estimation as described here: More... | |
struct | BorderDescription |
A structure to store if a point in a range image lies on a border between an obstacle and the background. More... | |
struct | Boundary |
A point structure representing a description of whether a point is lying on a surface boundary or not. More... | |
class | BoundaryEstimation |
BoundaryEstimation estimates whether a set of points is lying on surface boundaries using an angle criterion. The code makes use of the estimated surface normals at each point in the input dataset. More... | |
struct | BoundingBoxXYZ |
class | BoxClipper3D |
Implementation of a box clipper in 3D. Actually it allows affine transformations, thus any parallelepiped in general pose. The affine transformation is used to transform the point before clipping it using the unit cube centered at origin and with an extend of -1 to +1 in each dimension. More... | |
class | Clipper3D |
Base class for 3D clipper objects. More... | |
struct | cloud_show |
struct | cloud_show_base |
class | CloudIterator |
Iterator class for point clouds with or without given indices. More... | |
class | CloudSurfaceProcessing |
CloudSurfaceProcessing represents the base class for algorithms that takes a point cloud as input and produces a new output cloud that has been modified towards a better surface representation. These types of algorithms include surface smoothing, hole filling, cloud upsampling etc. More... | |
class | ColorGradientDOTModality |
class | ColorGradientModality |
Modality based on max-RGB gradients. More... | |
class | ColorModality |
class | Comparator |
Comparator is the base class for comparators that compare two points given some function. Currently intended for use with OrganizedConnectedComponentSegmentation. More... | |
class | ComparisonBase |
The (abstract) base class for the comparison object. More... | |
class | ComputeFailedException |
class | ConditionalEuclideanClustering |
ConditionalEuclideanClustering performs segmentation based on Euclidean distance and a user-defined clustering condition. More... | |
class | ConditionalRemoval |
ConditionalRemoval filters data that satisfies certain conditions. More... | |
class | ConditionAnd |
AND condition. More... | |
class | ConditionBase |
Base condition class. More... | |
class | ConditionOr |
OR condition. More... | |
class | ConstCloudIterator |
Iterator class for point clouds with or without given indices. More... | |
struct | CopyIfFieldExists |
A helper functor that can copy a specific value if the given field exists. More... | |
struct | Correspondence |
Correspondence represents a match between two entities (e.g., points, descriptors, etc). This is represesented via the indices of a source point and a target point, and the distance between them. More... | |
class | CorrespondenceGrouping |
Abstract base class for Correspondence Grouping algorithms. More... | |
class | CovarianceSampling |
Point Cloud sampling based on the 6D covariances. It selects the points such that the resulting cloud is as stable as possible for being registered (against a copy of itself) with ICP. The algorithm adds points to the resulting cloud incrementally, while trying to keep all the 6 eigenvalues of the covariance matrix as close to each other as possible. This class also comes with the computeConditionNumber method that returns a number which shows how stable a point cloud will be when used as input for ICP (the closer the value it is to 1.0, the better). More... | |
class | CrfNormalSegmentation |
class | CRHAlignment |
CRHAlignment uses two Camera Roll Histograms (CRH) to find the roll rotation that aligns both views. See: More... | |
class | CRHEstimation |
CRHEstimation estimates the Camera Roll Histogram (CRH) descriptor for a given point cloud dataset containing XYZ data and normals, as presented in: More... | |
class | CropBox |
CropBox is a filter that allows the user to filter all the data inside of a given box. More... | |
class | CropBox< pcl::PCLPointCloud2 > |
CropBox is a filter that allows the user to filter all the data inside of a given box. More... | |
class | CropHull |
Filter points that lie inside or outside a 3D closed surface or 2D closed polygon, as generated by the ConvexHull or ConcaveHull classes. More... | |
class | CustomPointRepresentation |
CustomPointRepresentation extends PointRepresentation to allow for sub-part selection on the point. More... | |
class | CVFHEstimation |
CVFHEstimation estimates the Clustered Viewpoint Feature Histogram (CVFH) descriptor for a given point cloud dataset containing XYZ data and normals, as presented in: More... | |
class | DefaultFeatureRepresentation |
DefaulFeatureRepresentation extends PointRepresentation and is intended to be used when defining the default behavior for feature descriptor types (i.e., copy each element of each field into a float array). More... | |
class | DefaultIterator |
class | DefaultPointRepresentation |
DefaultPointRepresentation extends PointRepresentation to define default behavior for common point types. More... | |
class | DefaultPointRepresentation< FPFHSignature33 > |
class | DefaultPointRepresentation< Narf36 > |
class | DefaultPointRepresentation< NormalBasedSignature12 > |
class | DefaultPointRepresentation< PFHRGBSignature250 > |
class | DefaultPointRepresentation< PFHSignature125 > |
class | DefaultPointRepresentation< PointNormal > |
class | DefaultPointRepresentation< PointXYZ > |
class | DefaultPointRepresentation< PointXYZI > |
class | DefaultPointRepresentation< PPFSignature > |
class | DefaultPointRepresentation< ShapeContext1980 > |
class | DefaultPointRepresentation< SHOT1344 > |
class | DefaultPointRepresentation< SHOT352 > |
class | DefaultPointRepresentation< VFHSignature308 > |
struct | DenseQuantizedMultiModTemplate |
struct | DenseQuantizedSingleModTemplate |
class | DifferenceOfNormalsEstimation |
A Difference of Normals (DoN) scale filter implementation for point cloud data. More... | |
class | DinastGrabber |
Grabber for DINAST devices (i.e., IPA-1002, IPA-1110, IPA-2001) More... | |
class | DistanceMap |
Represents a distance map obtained from a distance transformation. More... | |
class | DOTMOD |
Template matching using the DOTMOD approach. More... | |
class | DOTModality |
struct | DOTMODDetection |
class | EarClipping |
The ear clipping triangulation algorithm. The code is inspired by Flavien Brebion implementation, which is in n^3 and does not handle holes. More... | |
class | EdgeAwarePlaneComparator |
EdgeAwarePlaneComparator is a Comparator that operates on plane coefficients, for use in planar segmentation. In conjunction with OrganizedConnectedComponentSegmentation, this allows planes to be segmented from organized data. More... | |
class | EnergyMaps |
Stores a set of energy maps. More... | |
class | ESFEstimation |
ESFEstimation estimates the ensemble of shape functions descriptors for a given point cloud dataset containing points. Shape functions are D2, D3, A3. For more information about the ESF descriptor, see: Walter Wohlkinger and Markus Vincze, "Ensemble of Shape Functions for 3D Object Classification", IEEE International Conference on Robotics and Biomimetics (IEEE-ROBIO), 2011 More... | |
struct | ESFSignature640 |
A point structure representing the Ensemble of Shape Functions (ESF). More... | |
class | EuclideanClusterComparator |
EuclideanClusterComparator is a comparator used for finding clusters supported by planar surfaces. This needs to be run as a second pass after extracting planar surfaces, using MultiPlaneSegmentation for example. More... | |
class | EuclideanClusterExtraction |
EuclideanClusterExtraction represents a segmentation class for cluster extraction in an Euclidean sense. More... | |
class | EuclideanPlaneCoefficientComparator |
EuclideanPlaneCoefficientComparator is a Comparator that operates on plane coefficients, for use in planar segmentation. In conjunction with OrganizedConnectedComponentSegmentation, this allows planes to be segmented from organized data. More... | |
class | ExtractIndices |
ExtractIndices extracts a set of indices from a point cloud. More... | |
class | ExtractIndices< pcl::PCLPointCloud2 > |
ExtractIndices extracts a set of indices from a point cloud. Usage examples: More... | |
class | ExtractPolygonalPrismData |
ExtractPolygonalPrismData uses a set of point indices that represent a planar model, and together with a given height, generates a 3D polygonal prism. The polygonal prism is then used to segment all points lying inside it. More... | |
class | FastBilateralFilter |
Implementation of a fast bilateral filter for smoothing depth information in organized point clouds Based on the following paper: * Sylvain Paris and FrŽdo Durand "A Fast Approximation of the Bilateral Filter using a Signal Processing Approach" European Conference on Computer Vision (ECCV'06) More... | |
class | FastBilateralFilterOMP |
Implementation of a fast bilateral filter for smoothing depth information in organized point clouds Based on the following paper: * Sylvain Paris and FrÂŽdo Durand "A Fast Approximation of the Bilateral Filter using a Signal Processing Approach" European Conference on Computer Vision (ECCV'06) More... | |
class | Feature |
Feature represents the base feature class. Some generic 3D operations that are applicable to all features are defined here as static methods. More... | |
class | FeatureFromLabels |
class | FeatureFromNormals |
class | FeatureWithLocalReferenceFrames |
FeatureWithLocalReferenceFrames provides a public interface for descriptor extractor classes which need a local reference frame at each input keypoint. More... | |
class | FieldComparison |
The field-based specialization of the comparison object. More... | |
struct | FieldMatches |
class | FileGrabber |
FileGrabber provides a container-style interface for grabbers which operate on fixed-size input. More... | |
class | FileReader |
Point Cloud Data (FILE) file format reader interface. Any (FILE) format file reader should implement its virtual methodes. More... | |
class | FileWriter |
Point Cloud Data (FILE) file format writer. Any (FILE) format file reader should implement its virtual methodes. More... | |
class | Filter |
Filter represents the base filter class. All filters must inherit from this interface. More... | |
class | Filter< pcl::PCLPointCloud2 > |
Filter represents the base filter class. All filters must inherit from this interface. More... | |
class | FilterIndices |
FilterIndices represents the base class for filters that are about binary point removal. All derived classes have to implement the filter (PointCloud &output) and the filter (std::vector<int> &indices) methods. Ideally they also make use of the negative_, keep_organized_ and extract_removed_indices_ systems. The distinguishment between the negative_ and extract_removed_indices_ systems only makes sense if the class automatically filters non-finite entries in the filtering methods (recommended). More... | |
class | FilterIndices< pcl::PCLPointCloud2 > |
FilterIndices represents the base class for filters that are about binary point removal. All derived classes have to implement the filter (PointCloud &output) and the filter (std::vector<int> &indices) methods. Ideally they also make use of the negative_, keep_organized_ and extract_removed_indices_ systems. The distinguishment between the negative_ and extract_removed_indices_ systems only makes sense if the class automatically filters non-finite entries in the filtering methods (recommended). More... | |
struct | for_each_type_impl |
struct | for_each_type_impl< false > |
class | FPFHEstimation |
FPFHEstimation estimates the Fast Point Feature Histogram (FPFH) descriptor for a given point cloud dataset containing points and normals. More... | |
class | FPFHEstimationOMP |
FPFHEstimationOMP estimates the Fast Point Feature Histogram (FPFH) descriptor for a given point cloud dataset containing points and normals, in parallel, using the OpenMP standard. More... | |
struct | FPFHSignature33 |
A point structure representing the Fast Point Feature Histogram (FPFH). More... | |
class | FrustumCulling |
FrustumCulling filters points inside a frustum given by pose and field of view of the camera. More... | |
struct | Functor |
class | GaussianKernel |
class | GeneralizedIterativeClosestPoint |
GeneralizedIterativeClosestPoint is an ICP variant that implements the generalized iterative closest point algorithm as described by Alex Segal et al. in http://www.stanford.edu/~avsegal/resources/papers/Generalized_ICP.pdf The approach is based on using anistropic cost functions to optimize the alignment after closest point assignments have been made. The original code uses GSL and ANN while in ours we use an eigen mapped BFGS and FLANN. More... | |
class | GeometricConsistencyGrouping |
Class implementing a 3D correspondence grouping enforcing geometric consistency among feature correspondences. More... | |
class | GFPFHEstimation |
GFPFHEstimation estimates the Global Fast Point Feature Histogram (GFPFH) descriptor for a given point cloud dataset containing points and labels. More... | |
struct | GFPFHSignature16 |
A point structure representing the GFPFH descriptor with 16 bins. More... | |
class | GlobalHypothesesVerification |
A hypothesis verification method proposed in "A Global Hypotheses Verification Method for 3D Object Recognition", A. Aldoma and F. Tombari and L. Di Stefano and Markus Vincze, ECCV 2012. More... | |
class | Grabber |
Grabber interface for PCL 1.x device drivers. More... | |
class | GrabCut |
Implementation of the GrabCut segmentation in "GrabCut — Interactive Foreground Extraction using Iterated Graph Cuts" by Carsten Rother, Vladimir Kolmogorov and Andrew Blake. More... | |
struct | GradientXY |
A point structure representing Euclidean xyz coordinates, and the intensity value. More... | |
class | GraphRegistration |
GraphRegistration class is the base class for graph-based registration methods More... | |
class | GreedyProjectionTriangulation |
GreedyProjectionTriangulation is an implementation of a greedy triangulation algorithm for 3D points based on local 2D projections. It assumes locally smooth surfaces and relatively smooth transitions between areas with different point densities. More... | |
class | GreedyVerification |
A greedy hypothesis verification method. More... | |
class | GridProjection |
Grid projection surface reconstruction method. More... | |
class | GroundPlaneComparator |
GroundPlaneComparator is a Comparator for detecting smooth surfaces suitable for driving. In conjunction with OrganizedConnectedComponentSegmentation, this allows smooth groundplanes / road surfaces to be segmented from point clouds. More... | |
class | HarrisKeypoint2D |
HarrisKeypoint2D detects Harris corners family points. More... | |
class | HarrisKeypoint3D |
HarrisKeypoint3D uses the idea of 2D Harris keypoints, but instead of using image gradients, it uses surface normals. More... | |
class | HarrisKeypoint6D |
Keypoint detector for detecting corners in 3D (XYZ), 2D (intensity) AND mixed versions of these. More... | |
class | HDLGrabber |
Grabber for the Velodyne High-Definition-Laser (HDL) More... | |
struct | Histogram |
A point structure representing an N-D histogram. More... | |
class | Hough3DGrouping |
Class implementing a 3D correspondence grouping algorithm that can deal with multiple instances of a model template found into a given scene. Each correspondence casts a vote for a reference point in a 3D Hough Space. The remaining 3 DOF are taken into account by associating each correspondence with a local Reference Frame. The suggested PointModelRfT is pcl::ReferenceFrame. More... | |
class | HypothesisVerification |
Abstract class for hypotheses verification methods. More... | |
class | ImageGrabber |
class | ImageGrabberBase |
Base class for Image file grabber. More... | |
class | InitFailedException |
An exception thrown when init can not be performed should be used in all the PCLBase class inheritants. More... | |
class | IntegralImage2D |
Determines an integral image representation for a given organized data array. More... | |
class | IntegralImage2D< DataType, 1 > |
partial template specialization for integral images with just one channel. More... | |
class | IntegralImageNormalEstimation |
Surface normal estimation on organized data using integral images. More... | |
struct | IntegralImageTypeTraits |
struct | IntegralImageTypeTraits< char > |
struct | IntegralImageTypeTraits< float > |
struct | IntegralImageTypeTraits< int > |
struct | IntegralImageTypeTraits< short > |
struct | IntegralImageTypeTraits< unsigned char > |
struct | IntegralImageTypeTraits< unsigned int > |
struct | IntegralImageTypeTraits< unsigned short > |
struct | Intensity |
A point structure representing the grayscale intensity in single-channel images. Intensity is represented as a float value. More... | |
struct | Intensity32u |
A point structure representing the grayscale intensity in single-channel images. Intensity is represented as a uint8_t value. More... | |
struct | Intensity8u |
A point structure representing the grayscale intensity in single-channel images. Intensity is represented as a uint8_t value. More... | |
struct | IntensityGradient |
A point structure representing the intensity gradient of an XYZI point cloud. More... | |
class | IntensityGradientEstimation |
IntensityGradientEstimation estimates the intensity gradient for a point cloud that contains position and intensity values. The intensity gradient at a given point will be a vector orthogonal to the surface normal and pointing in the direction of the greatest increase in local intensity; the vector's magnitude indicates the rate of intensity change. More... | |
class | IntensitySpinEstimation |
IntensitySpinEstimation estimates the intensity-domain spin image descriptors for a given point cloud dataset containing points and intensity. For more information about the intensity-domain spin image descriptor, see: More... | |
struct | InterestPoint |
A point structure representing an interest point with Euclidean xyz coordinates, and an interest value. More... | |
struct | intersect |
class | InvalidConversionException |
An exception that is thrown when a PCLPointCloud2 message cannot be converted into a PCL type. More... | |
class | InvalidSACModelTypeException |
An exception that is thrown when a sample consensus model doesn't have the correct number of samples defined in model_types.h. More... | |
class | IOException |
An exception that is thrown during an IO error (typical read/write errors) More... | |
struct | ISMPeak |
This struct is used for storing peak. More... | |
class | IsNotDenseException |
An exception that is thrown when a PointCloud is not dense but is attemped to be used as dense. More... | |
class | ISSKeypoint3D |
ISSKeypoint3D detects the Intrinsic Shape Signatures keypoints for a given point cloud. This class is based on a particular implementation made by Federico Tombari and Samuele Salti and it has been explicitly adapted to PCL. More... | |
class | IterativeClosestPoint |
IterativeClosestPoint provides a base implementation of the Iterative Closest Point algorithm. The transformation is estimated based on Singular Value Decomposition (SVD). More... | |
class | IterativeClosestPointNonLinear |
IterativeClosestPointNonLinear is an ICP variant that uses Levenberg-Marquardt optimization backend. The resultant transformation is optimized as a quaternion. More... | |
class | IterativeClosestPointWithNormals |
IterativeClosestPointWithNormals is a special case of IterativeClosestPoint, that uses a transformation estimated based on Point to Plane distances by default. More... | |
class | IteratorIdx |
class | KdTree |
KdTree represents the base spatial locator class for kd-tree implementations. More... | |
class | KdTreeFLANN |
KdTreeFLANN is a generic type of 3D spatial locator using kD-tree structures. The class is making use of the FLANN (Fast Library for Approximate Nearest Neighbor) project by Marius Muja and David Lowe. More... | |
class | KernelWidthTooSmallException |
An exception that is thrown when the kernel size is too small. More... | |
class | Keypoint |
Keypoint represents the base class for key points. More... | |
struct | Label |
class | LabeledEuclideanClusterExtraction |
LabeledEuclideanClusterExtraction represents a segmentation class for cluster extraction in an Euclidean sense, with label info. More... | |
class | LeastMedianSquares |
LeastMedianSquares represents an implementation of the LMedS (Least Median of Squares) algorithm. LMedS is a RANSAC-like model-fitting algorithm that can tolerate up to 50% outliers without requiring thresholds to be set. See Andrea Fusiello's "Elements of Geometric Computer Vision" (http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO4/tutorial.html#x1-520007) for more details. More... | |
class | LinearizedMaps |
Stores a set of linearized maps. More... | |
class | LinearLeastSquaresNormalEstimation |
Surface normal estimation on dense data using a least-squares estimation based on a first-order Taylor approximation. More... | |
class | LineIterator |
Organized Index Iterator for iterating over the "pixels" for a given line using the Bresenham algorithm. Supports 4 and 8 neighborhood connectivity. More... | |
class | LINEMOD |
Template matching using the LINEMOD approach. More... | |
struct | LINEMOD_OrientationMap |
Map that stores orientations. More... | |
struct | LINEMODDetection |
Represents a detection of a template using the LINEMOD approach. More... | |
class | LineRGBD |
High-level class for template matching using the LINEMOD approach based on RGB and Depth data. More... | |
class | MarchingCubes |
The marching cubes surface reconstruction algorithm. This is an abstract class that takes a grid and extracts the isosurface as a mesh, based on the original marching cubes paper: More... | |
class | MarchingCubesHoppe |
The marching cubes surface reconstruction algorithm, using a signed distance function based on the distance from tangent planes, proposed by Hoppe et. al. in: Hoppe H., DeRose T., Duchamp T., MC-Donald J., Stuetzle W., "Surface reconstruction from unorganized points", SIGGRAPH '92. More... | |
class | MarchingCubesRBF |
The marching cubes surface reconstruction algorithm, using a signed distance function based on radial basis functions. Partially based on: Carr J.C., Beatson R.K., Cherrie J.B., Mitchell T.J., Fright W.R., McCallum B.C. and Evans T.R., "Reconstruction and representation of 3D objects with radial basis functions" SIGGRAPH '01. More... | |
class | MaskMap |
class | MaximumLikelihoodSampleConsensus |
MaximumLikelihoodSampleConsensus represents an implementation of the MLESAC (Maximum Likelihood Estimator SAmple Consensus) algorithm, as described in: "MLESAC: A new robust estimator with application to
estimating image geometry", P.H.S. Torr and A. Zisserman, Computer Vision and Image Understanding, vol 78, 2000. More... | |
class | MedianFilter |
Implementation of the median filter. The median filter is one of the simplest and wide-spread image processing filters. It is known to perform well with "shot"/impulse noise (some individual pixels having extreme values), it does not reduce contrast across steps in the function (as compared to filters based on averaging), and it is robust to outliers. Furthermore, it is simple to implement and efficient, as it requires a single pass over the image. It consists of a moving window of fixed size that replaces the pixel in the center with the median inside the window. More... | |
class | MeshConstruction |
MeshConstruction represents a base surface reconstruction class. All mesh constructing methods that take in a point cloud and generate a surface that uses the original data as vertices should inherit from this class. More... | |
class | MeshProcessing |
MeshProcessing represents the base class for mesh processing algorithms. More... | |
class | MeshQuadricDecimationVTK |
PCL mesh decimation based on vtkQuadricDecimation from the VTK library. Please check out the original documentation for more details on the inner workings of the algorithm Warning: This wrapper does two fairly computationally expensive conversions from the PCL PolygonMesh data structure to the vtkPolyData data structure and back. More... | |
class | MeshSmoothingLaplacianVTK |
PCL mesh smoothing based on the vtkSmoothPolyDataFilter algorithm from the VTK library. Please check out the original documentation for more details on the inner workings of the algorithm Warning: This wrapper does two fairly computationally expensive conversions from the PCL PolygonMesh data structure to the vtkPolyData data structure and back. More... | |
class | MeshSmoothingWindowedSincVTK |
PCL mesh smoothing based on the vtkWindowedSincPolyDataFilter algorithm from the VTK library. Please check out the original documentation for more details on the inner workings of the algorithm Warning: This wrapper does two fairly computationally expensive conversions from the PCL PolygonMesh data structure to the vtkPolyData data structure and back. More... | |
class | MeshSubdivisionVTK |
PCL mesh smoothing based on the vtkLinearSubdivisionFilter, vtkLoopSubdivisionFilter, vtkButterflySubdivisionFilter depending on the selected MeshSubdivisionVTKFilterType algorithm from the VTK library. Please check out the original documentation for more details on the inner workings of the algorithm Warning: This wrapper does two fairly computationally expensive conversions from the PCL PolygonMesh data structure to the vtkPolyData data structure and back. More... | |
class | MEstimatorSampleConsensus |
MEstimatorSampleConsensus represents an implementation of the MSAC (M-estimator SAmple Consensus) algorithm, as described in: "MLESAC: A new robust estimator with application to estimating image geometry", P.H.S. Torr and A. Zisserman, Computer Vision and Image Understanding, vol 78, 2000. More... | |
struct | ModelCoefficients |
struct | MomentInvariants |
A point structure representing the three moment invariants. More... | |
class | MomentInvariantsEstimation |
MomentInvariantsEstimation estimates the 3 moment invariants (j1, j2, j3) at each 3D point. More... | |
class | MovingLeastSquares |
MovingLeastSquares represent an implementation of the MLS (Moving Least Squares) algorithm for data smoothing and improved normal estimation. It also contains methods for upsampling the resulting cloud based on the parametric fit. Reference paper: "Computing and Rendering Point Set Surfaces" by Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin and Claudio T. Silva www.sci.utah.edu/~shachar/Publications/crpss.pdf. More... | |
class | MultiscaleFeaturePersistence |
Generic class for extracting the persistent features from an input point cloud It can be given any Feature estimator instance and will compute the features of the input over a multiscale representation of the cloud and output the unique ones over those scales. More... | |
class | Narf |
NARF (Normal Aligned Radial Features) is a point feature descriptor type for 3D data. Please refer to pcl/features/narf_descriptor.h if you want the class derived from pcl Feature. See B. Steder, R. B. Rusu, K. Konolige, and W. Burgard Point Feature Extraction on 3D Range Scans Taking into Account Object Boundaries In Proc. of the IEEE Int. Conf. on Robotics &Automation (ICRA). 2011. More... | |
struct | Narf36 |
A point structure representing the Narf descriptor. More... | |
class | NarfDescriptor |
class | NarfKeypoint |
NARF (Normal Aligned Radial Feature) keypoints. Input is a range image, output the indices of the keypoints See B. Steder, R. B. Rusu, K. Konolige, and W. Burgard Point Feature Extraction on 3D Range Scans Taking into Account Object Boundaries In Proc. of the IEEE Int. Conf. on Robotics &Automation (ICRA). 2011. More... | |
struct | NdCentroidFunctor |
Helper functor structure for n-D centroid estimation. More... | |
struct | NdConcatenateFunctor |
Helper functor structure for concatenate. More... | |
struct | NdCopyEigenPointFunctor |
Helper functor structure for copying data between an Eigen type and a PointT. More... | |
struct | NdCopyPointEigenFunctor |
Helper functor structure for copying data between an Eigen type and a PointT. More... | |
class | NNClassification |
Nearest neighbor search based classification of PCL point type features. FLANN is used to identify a neighborhood, based on which different scoring schemes can be employed to obtain likelihood values for a specified list of classes. More... | |
struct | Normal |
A point structure representing normal coordinates and the surface curvature estimate. (SSE friendly) More... | |
struct | NormalBasedSignature12 |
A point structure representing the Normal Based Signature for a feature matrix of 4-by-3. More... | |
class | NormalBasedSignatureEstimation |
Normal-based feature signature estimation class. Obtains the feature vector by applying Discrete Cosine and Fourier Transforms on an NxM array of real numbers representing the projection distances of the points in the input cloud to a disc around the point of interest. Please consult the following publication for more details: Xinju Li and Igor Guskov Multi-scale features for approximate alignment of point-based surfaces Proceedings of the third Eurographics symposium on Geometry processing July 2005, Vienna, Austria. More... | |
class | NormalDistributionsTransform |
A 3D Normal Distribution Transform registration implementation for point cloud data. More... | |
class | NormalDistributionsTransform2D |
NormalDistributionsTransform2D provides an implementation of the Normal Distributions Transform algorithm for scan matching. More... | |
class | NormalEstimation |
NormalEstimation estimates local surface properties (surface normals and curvatures)at each 3D point. If PointOutT is specified as pcl::Normal, the normal is stored in the first 3 components (0-2), and the curvature is stored in component 3. More... | |
class | NormalEstimationOMP |
NormalEstimationOMP estimates local surface properties at each 3D point, such as surface normals and curvatures, in parallel, using the OpenMP standard. More... | |
class | NormalRefinement |
Normal vector refinement class More... | |
class | NormalSpaceSampling |
NormalSpaceSampling samples the input point cloud in the space of normal directions computed at every point. More... | |
class | NotEnoughPointsException |
An exception that is thrown when the number of correspondants is not equal to the minimum required. More... | |
class | OrganizedConnectedComponentSegmentation |
OrganizedConnectedComponentSegmentation allows connected components to be found within organized point cloud data, given a comparison function. Given an input cloud and a comparator, it will output a PointCloud of labels, giving each connected component a unique id, along with a vector of PointIndices corresponding to each component. See OrganizedMultiPlaneSegmentation for an example application. More... | |
class | OrganizedFastMesh |
Simple triangulation/surface reconstruction for organized point clouds. Neighboring points (pixels in image space) are connected to construct a triangular mesh. More... | |
class | OrganizedIndexIterator |
base class for iterators on 2-dimensional maps like images/organized clouds etc. More... | |
class | OrganizedMultiPlaneSegmentation |
OrganizedMultiPlaneSegmentation finds all planes present in the input cloud, and outputs a vector of plane equations, as well as a vector of point clouds corresponding to the inliers of each detected plane. Only planes with more than min_inliers points are detected. Templated on point type, normal type, and label type. More... | |
class | OURCVFHEstimation |
OURCVFHEstimation estimates the Oriented, Unique and Repetable Clustered Viewpoint Feature Histogram (CVFH) descriptor for a given point cloud dataset given XYZ data and normals, as presented in: More... | |
class | PackedHSIComparison |
A packed HSI specialization of the comparison object. More... | |
class | PackedRGBComparison |
A packed rgb specialization of the comparison object. More... | |
class | PairwiseGraphRegistration |
PairwiseGraphRegistration class aligns the clouds two by two More... | |
class | PapazovHV |
A hypothesis verification method proposed in "An Efficient RANSAC for 3D Object Recognition in Noisy and Occluded Scenes", C. Papazov and D. Burschka, ACCV 2010. More... | |
class | PassThrough |
PassThrough passes points in a cloud based on constraints for one particular field of the point type. More... | |
class | PassThrough< pcl::PCLPointCloud2 > |
PassThrough uses the base Filter class methods to pass through all data that satisfies the user given constraints. More... | |
class | PCA |
class | PCDGrabber |
class | PCDGrabberBase |
Base class for PCD file grabber. More... | |
class | PCDReader |
Point Cloud Data (PCD) file format reader. More... | |
class | PCDWriter |
Point Cloud Data (PCD) file format writer. More... | |
class | PCLBase |
PCL base class. Implements methods that are used by most PCL algorithms. More... | |
class | PCLBase< pcl::PCLPointCloud2 > |
class | PCLException |
A base class for all pcl exceptions which inherits from std::runtime_error. More... | |
struct | PCLHeader |
struct | PCLImage |
struct | PCLPointCloud2 |
struct | PCLPointField |
class | PCLSurfaceBase |
Pure abstract class. All types of meshing/reconstruction algorithms in libpcl_surface must inherit from this, in order to make sure we have a consistent API. The methods that we care about here are: More... | |
class | PFHEstimation |
PFHEstimation estimates the Point Feature Histogram (PFH) descriptor for a given point cloud dataset containing points and normals. More... | |
class | PFHRGBEstimation |
struct | PFHRGBSignature250 |
A point structure representing the Point Feature Histogram with colors (PFHRGB). More... | |
struct | PFHSignature125 |
A point structure representing the Point Feature Histogram (PFH). More... | |
class | PiecewiseLinearFunction |
This provides functionalities to efficiently return values for piecewise linear function. More... | |
class | PlanarPolygon |
PlanarPolygon represents a planar (2D) polygon, potentially in a 3D space. More... | |
class | PlanarPolygonFusion |
PlanarPolygonFusion takes a list of 2D planar polygons and attempts to reduce them to a minimum set that best represents the scene, based on various given comparators. More... | |
class | PlanarRegion |
PlanarRegion represents a set of points that lie in a plane. Inherits summary statistics about these points from Region3D, and summary statistics of a 3D collection of points. More... | |
class | PlaneClipper3D |
Implementation of a plane clipper in 3D. More... | |
class | PlaneCoefficientComparator |
PlaneCoefficientComparator is a Comparator that operates on plane coefficients, for use in planar segmentation. In conjunction with OrganizedConnectedComponentSegmentation, this allows planes to be segmented from organized data. More... | |
class | PlaneRefinementComparator |
PlaneRefinementComparator is a Comparator that operates on plane coefficients, for use in planar segmentation. In conjunction with OrganizedConnectedComponentSegmentation, this allows planes to be segmented from organized data. More... | |
class | PLYReader |
Point Cloud Data (PLY) file format reader. More... | |
class | PLYWriter |
Point Cloud Data (PLY) file format writer. More... | |
class | PointCloud |
PointCloud represents the base class in PCL for storing collections of 3D points. More... | |
struct | PointCorrespondence3D |
Representation of a (possible) correspondence between two 3D points in two different coordinate frames (e.g. from feature matching) More... | |
struct | PointCorrespondence6D |
Representation of a (possible) correspondence between two points (e.g. from feature matching), that encode complete 6DOF transoformations. More... | |
class | PointDataAtOffset |
A datatype that enables type-correct comparisons. More... | |
struct | PointIndices |
struct | PointNormal |
A point structure representing Euclidean xyz coordinates, together with normal coordinates and the surface curvature estimate. (SSE friendly) More... | |
class | PointRepresentation |
PointRepresentation provides a set of methods for converting a point structs/object into an n-dimensional vector. More... | |
struct | PointRGB |
A point structure for representing RGB color. More... | |
struct | PointSurfel |
A surfel, that is, a point structure representing Euclidean xyz coordinates, together with normal coordinates, a RGBA color, a radius, a confidence value and the surface curvature estimate. More... | |
struct | PointUV |
A 2D point structure representing pixel image coordinates. More... | |
struct | PointWithRange |
A point structure representing Euclidean xyz coordinates, padded with an extra range float. More... | |
struct | PointWithScale |
A point structure representing a 3-D position and scale. More... | |
struct | PointWithViewpoint |
A point structure representing Euclidean xyz coordinates together with the viewpoint from which it was seen. More... | |
struct | PointXY |
A 2D point structure representing Euclidean xy coordinates. More... | |
struct | PointXYZ |
A point structure representing Euclidean xyz coordinates. (SSE friendly) More... | |
struct | PointXYZHSV |
struct | PointXYZI |
struct | PointXYZINormal |
A point structure representing Euclidean xyz coordinates, intensity, together with normal coordinates and the surface curvature estimate. More... | |
struct | PointXYZL |
struct | PointXYZRGB |
A point structure representing Euclidean xyz coordinates, and the RGB color. More... | |
struct | PointXYZRGBA |
A point structure representing Euclidean xyz coordinates, and the RGBA color. More... | |
struct | PointXYZRGBL |
struct | PointXYZRGBNormal |
A point structure representing Euclidean xyz coordinates, and the RGB color, together with normal coordinates and the surface curvature estimate. Due to historical reasons (PCL was first developed as a ROS package), the RGB information is packed into an integer and casted to a float. This is something we wish to remove in the near future, but in the meantime, the following code snippet should help you pack and unpack RGB colors in your PointXYZRGB structure: More... | |
class | Poisson |
The Poisson surface reconstruction algorithm. More... | |
struct | PolygonMesh |
class | PolynomialCalculationsT |
This provides some functionality for polynomials, like finding roots or approximating bivariate polynomials. More... | |
class | PosesFromMatches |
calculate 3D transformation based on point correspondencdes More... | |
class | PPFEstimation |
Class that calculates the "surflet" features for each pair in the given pointcloud. Please refer to the following publication for more details: B. Drost, M. Ulrich, N. Navab, S. Ilic Model Globally, Match Locally: Efficient and Robust 3D Object Recognition 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 13-18 June 2010, San Francisco, CA. More... | |
class | PPFHashMapSearch |
class | PPFRegistration |
Class that registers two point clouds based on their sets of PPFSignatures. Please refer to the following publication for more details: B. Drost, M. Ulrich, N. Navab, S. Ilic Model Globally, Match Locally: Efficient and Robust 3D Object Recognition 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 13-18 June 2010, San Francisco, CA. More... | |
class | PPFRGBEstimation |
class | PPFRGBRegionEstimation |
struct | PPFRGBSignature |
A point structure for storing the Point Pair Color Feature (PPFRGB) values. More... | |
struct | PPFSignature |
A point structure for storing the Point Pair Feature (PPF) values. More... | |
struct | PrincipalCurvatures |
A point structure representing the principal curvatures and their magnitudes. More... | |
class | PrincipalCurvaturesEstimation |
PrincipalCurvaturesEstimation estimates the directions (eigenvectors) and magnitudes (eigenvalues) of principal surface curvatures for a given point cloud dataset containing points and normals. More... | |
struct | PrincipalRadiiRSD |
A point structure representing the minimum and maximum surface radii (in meters) computed using RSD. More... | |
class | ProgressiveSampleConsensus |
RandomSampleConsensus represents an implementation of the RANSAC (RAndom SAmple Consensus) algorithm, as described in: "Matching with PROSAC – Progressive Sample Consensus", Chum, O. and Matas, J.G., CVPR, I: 220-226 2005. More... | |
class | ProjectInliers |
ProjectInliers uses a model and a set of inlier indices from a PointCloud to project them into a separate PointCloud. More... | |
class | ProjectInliers< pcl::PCLPointCloud2 > |
ProjectInliers uses a model and a set of inlier indices from a PointCloud to project them into a separate PointCloud. More... | |
class | PyramidFeatureHistogram |
Class that compares two sets of features by using a multiscale representation of the features inside a pyramid. Each level of the pyramid offers information about the similarity of the two feature sets. More... | |
class | QuantizableModality |
Interface for a quantizable modality. More... | |
class | QuantizedMap |
struct | QuantizedMultiModFeature |
Feature that defines a position and quantized value in a specific modality. More... | |
struct | QuantizedNormalLookUpTable |
Look-up-table for fast surface normal quantization. More... | |
class | RadiusOutlierRemoval |
RadiusOutlierRemoval filters points in a cloud based on the number of neighbors they have. More... | |
class | RadiusOutlierRemoval< pcl::PCLPointCloud2 > |
RadiusOutlierRemoval is a simple filter that removes outliers if the number of neighbors in a certain search radius is smaller than a given K. More... | |
class | RandomizedMEstimatorSampleConsensus |
RandomizedMEstimatorSampleConsensus represents an implementation of the RMSAC (Randomized M-estimator SAmple Consensus) algorithm, which basically adds a Td,d test (see RandomizedRandomSampleConsensus) to an MSAC estimator (see MEstimatorSampleConsensus). More... | |
class | RandomizedRandomSampleConsensus |
RandomizedRandomSampleConsensus represents an implementation of the RRANSAC (Randomized RAndom SAmple Consensus), as described in "Randomized RANSAC with Td,d test", O. Chum and J. Matas, Proc. British Machine Vision Conf. (BMVC '02), vol. 2, BMVA, pp. 448-457, 2002. More... | |
class | RandomSample |
RandomSample applies a random sampling with uniform probability. Based off Algorithm A from the paper "Faster Methods for Random Sampling" by Jeffrey Scott Vitter. The algorithm runs in O(N) and results in sorted indices http://www.ittc.ku.edu/~jsv/Papers/Vit84.sampling.pdf More... | |
class | RandomSample< pcl::PCLPointCloud2 > |
RandomSample applies a random sampling with uniform probability. More... | |
class | RandomSampleConsensus |
RandomSampleConsensus represents an implementation of the RANSAC (RAndom SAmple Consensus) algorithm, as described in: "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography", Martin A. Fischler and Robert C. Bolles, Comm. Of the ACM 24: 381–395, June 1981. More... | |
class | RangeImage |
RangeImage is derived from pcl/PointCloud and provides functionalities with focus on situations where a 3D scene was captured from a specific view point. More... | |
class | RangeImageBorderExtractor |
Extract obstacle borders from range images, meaning positions where there is a transition from foreground to background. More... | |
class | RangeImagePlanar |
RangeImagePlanar is derived from the original range image and differs from it because it's not a spherical projection, but using a projection plane (as normal cameras do), therefore being better applicable for range sensors that already provide a range image by themselves (stereo cameras, ToF-cameras), so that a conversion to point cloud and then to a spherical range image becomes unnecessary. More... | |
class | RangeImageSpherical |
RangeImageSpherical is derived from the original range image and uses a slightly different spherical projection. In the original range image, the image will appear more and more "scaled down" along the y axis, the further away from the mean line of the image a point is. This class removes this scaling, which makes it especially suitable for spinning LIDAR sensors that capure a 360° view, since a rotation of the sensor will now simply correspond to a shift of the range image. (This class is similar to RangeImagePlanar, but changes less of the behaviour of the base class.) More... | |
struct | ReferenceFrame |
class | Region3D |
Region3D represents summary statistics of a 3D collection of points. More... | |
class | RegionGrowing |
Implements the well known Region Growing algorithm used for segmentation. Description can be found in the article "Segmentation of point clouds using smoothness constraint" by T. Rabbania, F. A. van den Heuvelb, G. Vosselmanc. In addition to residual test, the possibility to test curvature is added. More... | |
class | RegionGrowingRGB |
Implements the well known Region Growing algorithm used for segmentation based on color of points. Description can be found in the article "Color-based segmentation of point clouds" by Qingming Zhan, Yubin Liang, Yinghui Xiao. More... | |
struct | RegionXY |
Defines a region in XY-space. More... | |
class | Registration |
Registration represents the base registration class for general purpose, ICP-like methods. More... | |
class | RegistrationVisualizer |
RegistrationVisualizer represents the base class for rendering the intermediate positions ocupied by the source point cloud during it's registration to the target point cloud. A registration algorithm is considered as input and it's covergence is rendered. More... | |
struct | RGB |
A structure representing RGB color information. More... | |
class | RGBPlaneCoefficientComparator |
RGBPlaneCoefficientComparator is a Comparator that operates on plane coefficients, for use in planar segmentation. Also takes into account RGB, so we can segmented different colored co-planar regions. In conjunction with OrganizedConnectedComponentSegmentation, this allows planes to be segmented from organized data. More... | |
class | RIFTEstimation |
RIFTEstimation estimates the Rotation Invariant Feature Transform descriptors for a given point cloud dataset containing points and intensity. For more information about the RIFT descriptor, see: More... | |
class | RobotEyeGrabber |
Grabber for the Ocular Robotics RobotEye sensor. More... | |
class | RSDEstimation |
RSDEstimation estimates the Radius-based Surface Descriptor (minimal and maximal radius of the local surface's curves) for a given point cloud dataset containing points and normals. More... | |
class | SACSegmentation |
SACSegmentation represents the Nodelet segmentation class for Sample Consensus methods and models, in the sense that it just creates a Nodelet wrapper for generic-purpose SAC-based segmentation. More... | |
class | SACSegmentationFromNormals |
SACSegmentationFromNormals represents the PCL nodelet segmentation class for Sample Consensus methods and models that require the use of surface normals for estimation. More... | |
class | SampleConsensus |
SampleConsensus represents the base class. All sample consensus methods must inherit from this class. More... | |
class | SampleConsensusInitialAlignment |
SampleConsensusInitialAlignment is an implementation of the initial alignment algorithm described in section IV of "Fast Point Feature Histograms (FPFH) for 3D Registration," Rusu et al. More... | |
class | SampleConsensusModel |
SampleConsensusModel represents the base model class. All sample consensus models must inherit from this class. More... | |
class | SampleConsensusModelCircle2D |
SampleConsensusModelCircle2D defines a model for 2D circle segmentation on the X-Y plane. More... | |
class | SampleConsensusModelCircle3D |
SampleConsensusModelCircle3D defines a model for 3D circle segmentation. More... | |
class | SampleConsensusModelCone |
SampleConsensusModelCone defines a model for 3D cone segmentation. The model coefficients are defined as: More... | |
class | SampleConsensusModelCylinder |
SampleConsensusModelCylinder defines a model for 3D cylinder segmentation. The model coefficients are defined as: More... | |
class | SampleConsensusModelFromNormals |
SampleConsensusModelFromNormals represents the base model class for models that require the use of surface normals for estimation. More... | |
class | SampleConsensusModelLine |
SampleConsensusModelLine defines a model for 3D line segmentation. The model coefficients are defined as: More... | |
class | SampleConsensusModelNormalParallelPlane |
SampleConsensusModelNormalParallelPlane defines a model for 3D plane segmentation using additional surface normal constraints. Basically this means that checking for inliers will not only involve a "distance to
model" criterion, but also an additional "maximum angular deviation" between the plane's normal and the inlier points normals. In addition, the plane normal must lie parallel to an user-specified axis. More... | |
class | SampleConsensusModelNormalPlane |
SampleConsensusModelNormalPlane defines a model for 3D plane segmentation using additional surface normal constraints. Basically this means that checking for inliers will not only involve a "distance to
model" criterion, but also an additional "maximum angular deviation" between the plane's normal and the inlier points normals. More... | |
class | SampleConsensusModelNormalSphere |
SampleConsensusModelNormalSphere defines a model for 3D sphere segmentation using additional surface normal constraints. Basically this means that checking for inliers will not only involve a "distance to
model" criterion, but also an additional "maximum angular deviation" between the sphere's normal and the inlier points normals. More... | |
class | SampleConsensusModelParallelLine |
SampleConsensusModelParallelLine defines a model for 3D line segmentation using additional angular constraints. The model coefficients are defined as: More... | |
class | SampleConsensusModelParallelPlane |
SampleConsensusModelParallelPlane defines a model for 3D plane segmentation using additional angular constraints. The plane must be parallel to a user-specified axis (setAxis) within an user-specified angle threshold (setEpsAngle). More... | |
class | SampleConsensusModelPerpendicularPlane |
SampleConsensusModelPerpendicularPlane defines a model for 3D plane segmentation using additional angular constraints. The plane must be perpendicular to an user-specified axis (setAxis), up to an user-specified angle threshold (setEpsAngle). The model coefficients are defined as: More... | |
class | SampleConsensusModelPlane |
SampleConsensusModelPlane defines a model for 3D plane segmentation. The model coefficients are defined as: More... | |
class | SampleConsensusModelRegistration |
SampleConsensusModelRegistration defines a model for Point-To-Point registration outlier rejection. More... | |
class | SampleConsensusModelRegistration2D |
SampleConsensusModelRegistration2D defines a model for Point-To-Point registration outlier rejection using distances between 2D pixels. More... | |
class | SampleConsensusModelSphere |
SampleConsensusModelSphere defines a model for 3D sphere segmentation. The model coefficients are defined as: More... | |
class | SampleConsensusModelStick |
SampleConsensusModelStick defines a model for 3D stick segmentation. A stick is a line with an user given minimum/maximum width. The model coefficients are defined as: More... | |
class | SampleConsensusPrerejective |
Pose estimation and alignment class using a prerejective RANSAC routine. More... | |
class | SamplingSurfaceNormal |
SamplingSurfaceNormal divides the input space into grids until each grid contains a maximum of N points, and samples points randomly within each grid. Normal is computed using the N points of each grid. All points sampled within a grid are assigned the same normal. More... | |
class | ScopeTime |
Class to measure the time spent in a scope. More... | |
class | SeededHueSegmentation |
SeededHueSegmentation. More... | |
class | SegmentDifferences |
SegmentDifferences obtains the difference between two spatially aligned point clouds and returns the difference between them for a maximum given distance threshold. More... | |
struct | SetIfFieldExists |
A helper functor that can set a specific value in a field if the field exists. More... | |
class | ShadowPoints |
ShadowPoints removes the ghost points appearing on edge discontinuties More... | |
struct | ShapeContext1980 |
A point structure representing a Shape Context. More... | |
class | ShapeContext3DEstimation |
ShapeContext3DEstimation implements the 3D shape context descriptor as described in: More... | |
struct | SHOT1344 |
A point structure representing the generic Signature of Histograms of OrienTations (SHOT) - shape+color. More... | |
struct | SHOT352 |
A point structure representing the generic Signature of Histograms of OrienTations (SHOT) - shape only. More... | |
class | SHOTColorEstimation |
SHOTColorEstimation estimates the Signature of Histograms of OrienTations (SHOT) descriptor for a given point cloud dataset containing points, normals and colors. More... | |
class | SHOTColorEstimationOMP |
SHOTColorEstimationOMP estimates the Signature of Histograms of OrienTations (SHOT) descriptor for a given point cloud dataset containing points, normals and colors, in parallel, using the OpenMP standard. More... | |
class | SHOTEstimation |
SHOTEstimation estimates the Signature of Histograms of OrienTations (SHOT) descriptor for a given point cloud dataset containing points and normals. More... | |
class | SHOTEstimationBase |
SHOTEstimation estimates the Signature of Histograms of OrienTations (SHOT) descriptor for a given point cloud dataset containing points and normals. More... | |
class | SHOTEstimationOMP |
SHOTEstimationOMP estimates the Signature of Histograms of OrienTations (SHOT) descriptor for a given point cloud dataset containing points and normals, in parallel, using the OpenMP standard. More... | |
class | SHOTLocalReferenceFrameEstimation |
SHOTLocalReferenceFrameEstimation estimates the Local Reference Frame used in the calculation of the (SHOT) descriptor. More... | |
class | SHOTLocalReferenceFrameEstimationOMP |
SHOTLocalReferenceFrameEstimation estimates the Local Reference Frame used in the calculation of the (SHOT) descriptor. More... | |
class | SIFTKeypoint |
SIFTKeypoint detects the Scale Invariant Feature Transform keypoints for a given point cloud dataset containing points and intensity. This implementation adapts the original algorithm from images to point clouds. More... | |
struct | SIFTKeypointFieldSelector |
struct | SIFTKeypointFieldSelector< PointNormal > |
struct | SIFTKeypointFieldSelector< PointXYZ > |
struct | SIFTKeypointFieldSelector< PointXYZRGB > |
struct | SIFTKeypointFieldSelector< PointXYZRGBA > |
class | SmoothedSurfacesKeypoint |
Based on the paper: Xinju Li and Igor Guskov Multi-scale features for approximate alignment of point-based surfaces Proceedings of the third Eurographics symposium on Geometry processing July 2005, Vienna, Austria. More... | |
class | SolverDidntConvergeException |
An exception that is thrown when the non linear solver didn't converge. More... | |
struct | SparseQuantizedMultiModTemplate |
A multi-modality template constructed from a set of quantized multi-modality features. More... | |
class | SpinImageEstimation |
Estimates spin-image descriptors in the given input points. More... | |
class | StaticRangeCoder |
StaticRangeCoder compression class More... | |
class | StatisticalMultiscaleInterestRegionExtraction |
Class for extracting interest regions from unstructured point clouds, based on a multi scale statistical approach. Please refer to the following publications for more details: Ranjith Unnikrishnan and Martial Hebert Multi-Scale Interest Regions from Unorganized Point Clouds Workshop on Search in 3D (S3D), IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) June, 2008. More... | |
class | StatisticalOutlierRemoval |
StatisticalOutlierRemoval uses point neighborhood statistics to filter outlier data. More... | |
class | StatisticalOutlierRemoval< pcl::PCLPointCloud2 > |
StatisticalOutlierRemoval uses point neighborhood statistics to filter outlier data. For more information check: More... | |
class | StopWatch |
Simple stopwatch. More... | |
class | Supervoxel |
Supervoxel container class - stores a cluster extracted using supervoxel clustering. More... | |
class | SupervoxelClustering |
Implements a supervoxel algorithm based on voxel structure, normals, and rgb values. More... | |
class | SurfaceNormalModality |
Modality based on surface normals. More... | |
class | SurfaceReconstruction |
SurfaceReconstruction represents a base surface reconstruction class. All surface reconstruction methods take in a point cloud and generate a new surface from it, by either re-sampling the data or generating new data altogether. These methods are thus not preserving the topology of the original data. More... | |
class | SurfelSmoothing |
class | SUSANKeypoint |
SUSANKeypoint implements a RGB-D extension of the SUSAN detector inluding normal directions variation in top of intensity variation. It is different from Harris in that it exploits normals directly so it is faster. Original paper "SUSAN — A New Approach to Low Level Image Processing", Smith, Stephen M. and Brady, J. Michael. More... | |
class | SynchronizedQueue |
class | Synchronizer |
struct | TexMaterial |
class | TextureMapping |
The texture mapping algorithm. More... | |
struct | TextureMesh |
class | TfQuadraticXYZComparison |
A comparison whether the (x,y,z) components of a given point satisfy (p'Ap + 2v'p + c [OP] 0). Here [OP] stands for the defined pcl::ComparisonOps, i.e. for GT, GE, LT, LE or EQ; p = (x,y,z) is a point of the point cloud; A is 3x3 matrix; v is the 3x1 vector; c is a scalar. More... | |
class | TimeTrigger |
Timer class that invokes registered callback methods periodically. More... | |
class | TransformationFromCorrespondences |
Calculates a transformation based on corresponding 3D points. More... | |
class | UnhandledPointTypeException |
class | UniformSampling |
UniformSampling assembles a local 3D grid over a given PointCloud, and downsamples + filters the data. More... | |
class | UniqueShapeContext |
UniqueShapeContext implements the Unique Shape Context Descriptor described here: More... | |
class | UnorganizedPointCloudException |
An exception that is thrown when an organized point cloud is needed but not provided. More... | |
class | VectorAverage |
Calculates the weighted average and the covariance matrix. More... | |
struct | Vertices |
Describes a set of vertices in a polygon mesh, by basically storing an array of indices. More... | |
class | VFHClassifierNN |
Utility class for nearest neighbor search based classification of VFH features. More... | |
class | VFHEstimation |
VFHEstimation estimates the Viewpoint Feature Histogram (VFH) descriptor for a given point cloud dataset containing points and normals. The default VFH implementation uses 45 binning subdivisions for each of the three extended FPFH values, plus another 45 binning subdivisions for the distances between each point and the centroid and 128 binning subdivisions for the viewpoint component, which results in a 308-byte array of float values. These are stored in a pcl::VFHSignature308 point type. A major difference between the PFH/FPFH descriptors and VFH, is that for a given point cloud dataset, only a single VFH descriptor will be estimated (vfhs->points.size() should be 1), while the resultant PFH/FPFH data will have the same number of entries as the number of points in the cloud. More... | |
struct | VFHSignature308 |
A point structure representing the Viewpoint Feature Histogram (VFH). More... | |
class | VoxelGrid |
VoxelGrid assembles a local 3D grid over a given PointCloud, and downsamples + filters the data. More... | |
class | VoxelGrid< pcl::PCLPointCloud2 > |
VoxelGrid assembles a local 3D grid over a given PointCloud, and downsamples + filters the data. More... | |
class | VoxelGridCovariance |
A searchable voxel strucure containing the mean and covariance of the data. More... | |
class | VoxelGridLabel |
class | VoxelGridOcclusionEstimation |
VoxelGrid to estimate occluded space in the scene. The ray traversal algorithm is implemented by the work of 'John Amanatides and Andrew Woo, A Fast Voxel Traversal Algorithm for Ray Tracing'. More... | |
class | VTKUtils |
struct | xNdCopyEigenPointFunctor |
Helper functor structure for copying data between an Eigen::VectorXf and a PointT. More... | |
struct | xNdCopyPointEigenFunctor |
Helper functor structure for copying data between an Eigen::VectorXf and a PointT. More... | |
Typedefs | |
typedef Eigen::Map < Eigen::Array3f > | Array3fMap |
typedef const Eigen::Map < const Eigen::Array3f > | Array3fMapConst |
typedef Eigen::Map < Eigen::Array4f, Eigen::Aligned > | Array4fMap |
typedef const Eigen::Map < const Eigen::Array4f, Eigen::Aligned > | Array4fMapConst |
typedef BivariatePolynomialT < float > | BivariatePolynomial |
typedef BivariatePolynomialT < double > | BivariatePolynomiald |
typedef std::bitset< 32 > | BorderTraits |
Data type to store extended information about a transition from foreground to backgroundSpecification of the fields for BorderDescription::traits. | |
typedef pcl::PointCloud < pcl::PointXYZRGB > | cc |
typedef pcl::PointCloud < pcl::PointXYZRGBA > | cca |
typedef std::vector < pcl::Correspondence, Eigen::aligned_allocator < pcl::Correspondence > > | Correspondences |
typedef boost::shared_ptr < const Correspondences > | CorrespondencesConstPtr |
typedef boost::shared_ptr < Correspondences > | CorrespondencesPtr |
typedef pcl::PointCloud < pcl::PointXYZI > | gc |
typedef boost::shared_ptr < PCLHeader const > | HeaderConstPtr |
typedef boost::shared_ptr < PCLHeader > | HeaderPtr |
typedef std::vector < pcl::PointIndices > | IndicesClusters |
typedef boost::shared_ptr < std::vector < pcl::PointIndices > > | IndicesClustersPtr |
typedef boost::shared_ptr < const std::vector< int > > | IndicesConstPtr |
typedef boost::shared_ptr < std::vector< int > > | IndicesPtr |
typedef pcl::PointCloud < pcl::PointXYZ > | mc |
typedef boost::shared_ptr < ::pcl::ModelCoefficients const > | ModelCoefficientsConstPtr |
typedef boost::shared_ptr < ::pcl::ModelCoefficients > | ModelCoefficientsPtr |
typedef std::vector < detail::FieldMapping > | MsgFieldMap |
typedef boost::shared_ptr < ::pcl::PCLImage const > | PCLImageConstPtr |
typedef boost::shared_ptr < ::pcl::PCLImage > | PCLImagePtr |
typedef boost::shared_ptr < ::pcl::PCLPointCloud2 const > | PCLPointCloud2ConstPtr |
typedef boost::shared_ptr < ::pcl::PCLPointCloud2 > | PCLPointCloud2Ptr |
typedef boost::shared_ptr < ::pcl::PCLPointField const > | PCLPointFieldConstPtr |
typedef boost::shared_ptr < ::pcl::PCLPointField > | PCLPointFieldPtr |
typedef std::vector < PointCorrespondence3D, Eigen::aligned_allocator < PointCorrespondence3D > > | PointCorrespondences3DVector |
typedef std::vector < PointCorrespondence6D, Eigen::aligned_allocator < PointCorrespondence6D > > | PointCorrespondences6DVector |
typedef boost::shared_ptr < ::pcl::PointIndices const > | PointIndicesConstPtr |
typedef boost::shared_ptr < ::pcl::PointIndices > | PointIndicesPtr |
typedef boost::shared_ptr < ::pcl::PolygonMesh const > | PolygonMeshConstPtr |
typedef boost::shared_ptr < ::pcl::PolygonMesh > | PolygonMeshPtr |
typedef PolynomialCalculationsT< float > | PolynomialCalculations |
typedef PolynomialCalculationsT < double > | PolynomialCalculationsd |
typedef boost::shared_ptr < pcl::TextureMesh const > | TextureMeshConstPtr |
typedef boost::shared_ptr < pcl::TextureMesh > | TextureMeshPtr |
typedef Eigen::Map < Eigen::Vector3f > | Vector3fMap |
typedef const Eigen::Map < const Eigen::Vector3f > | Vector3fMapConst |
typedef Eigen::Map < Eigen::Vector4f, Eigen::Aligned > | Vector4fMap |
typedef const Eigen::Map < const Eigen::Vector4f, Eigen::Aligned > | Vector4fMapConst |
typedef VectorAverage< float, 2 > | VectorAverage2f |
typedef VectorAverage< float, 3 > | VectorAverage3f |
typedef VectorAverage< float, 4 > | VectorAverage4f |
typedef boost::shared_ptr < Vertices const > | VerticesConstPtr |
typedef boost::shared_ptr < Vertices > | VerticesPtr |
Enumerations | |
enum | BorderTrait { BORDER_TRAIT__OBSTACLE_BORDER, BORDER_TRAIT__SHADOW_BORDER, BORDER_TRAIT__VEIL_POINT, BORDER_TRAIT__SHADOW_BORDER_TOP, BORDER_TRAIT__SHADOW_BORDER_RIGHT, BORDER_TRAIT__SHADOW_BORDER_BOTTOM, BORDER_TRAIT__SHADOW_BORDER_LEFT, BORDER_TRAIT__OBSTACLE_BORDER_TOP, BORDER_TRAIT__OBSTACLE_BORDER_RIGHT, BORDER_TRAIT__OBSTACLE_BORDER_BOTTOM, BORDER_TRAIT__OBSTACLE_BORDER_LEFT, BORDER_TRAIT__VEIL_POINT_TOP, BORDER_TRAIT__VEIL_POINT_RIGHT, BORDER_TRAIT__VEIL_POINT_BOTTOM, BORDER_TRAIT__VEIL_POINT_LEFT } |
Specification of the fields for BorderDescription::traits. More... | |
enum | NormType { L1, L2_SQR, L2, LINF, JM, B, SUBLINEAR, CS, DIV, PF, K, KL, HIK } |
Enum that defines all the types of norms available. More... | |
enum | SacModel { SACMODEL_PLANE, SACMODEL_LINE, SACMODEL_CIRCLE2D, SACMODEL_CIRCLE3D, SACMODEL_SPHERE, SACMODEL_CYLINDER, SACMODEL_CONE, SACMODEL_TORUS, SACMODEL_PARALLEL_LINE, SACMODEL_PERPENDICULAR_PLANE, SACMODEL_PARALLEL_LINES, SACMODEL_NORMAL_PLANE, SACMODEL_NORMAL_SPHERE, SACMODEL_REGISTRATION, SACMODEL_REGISTRATION_2D, SACMODEL_PARALLEL_PLANE, SACMODEL_NORMAL_PARALLEL_PLANE, SACMODEL_STICK } |
Functions | |
template<typename PointT > | |
void | approximatePolygon (const PlanarPolygon< PointT > &polygon, PlanarPolygon< PointT > &approx_polygon, float threshold, bool refine=false, bool closed=true) |
see approximatePolygon2D | |
template<typename PointT > | |
void | approximatePolygon2D (const typename PointCloud< PointT >::VectorType &polygon, typename PointCloud< PointT >::VectorType &approx_polygon, float threshold, bool refine=false, bool closed=true) |
returns an approximate polygon to given 2D contour. Uses just X and Y values. | |
template<typename NormalT > | |
std::vector< float > | assignNormalWeights (const PointCloud< NormalT > &, int, const std::vector< int > &k_indices, const std::vector< float > &k_sqr_distances) |
Assign weights of nearby normals used for refinement. | |
template<typename FloatVectorT > | |
float | B_Norm (FloatVectorT A, FloatVectorT B, int dim) |
Compute the B norm of the vector between two points. | |
template<typename PointT > | |
float | calculatePolygonArea (const pcl::PointCloud< PointT > &polygon) |
Calculate the area of a polygon given a point cloud that defines the polygon. | |
bool | compareLabeledPointClusters (const pcl::PointIndices &a, const pcl::PointIndices &b) |
Sort clusters method (for std::sort). | |
bool | comparePair (std::pair< float, int > i, std::pair< float, int > j) |
This function is used as a comparator for sorting. | |
bool | comparePointClusters (const pcl::PointIndices &a, const pcl::PointIndices &b) |
Sort clusters method (for std::sort). | |
template<typename PointT , typename Scalar > | |
unsigned int | compute3DCentroid (ConstCloudIterator< PointT > &cloud_iterator, Eigen::Matrix< Scalar, 4, 1 > ¢roid) |
Compute the 3D (X-Y-Z) centroid of a set of points and return it as a 3D vector. | |
template<typename PointT > | |
unsigned int | compute3DCentroid (ConstCloudIterator< PointT > &cloud_iterator, Eigen::Vector4f ¢roid) |
template<typename PointT > | |
unsigned int | compute3DCentroid (ConstCloudIterator< PointT > &cloud_iterator, Eigen::Vector4d ¢roid) |
template<typename PointT , typename Scalar > | |
unsigned int | compute3DCentroid (const pcl::PointCloud< PointT > &cloud, Eigen::Matrix< Scalar, 4, 1 > ¢roid) |
Compute the 3D (X-Y-Z) centroid of a set of points and return it as a 3D vector. | |
template<typename PointT > | |
unsigned int | compute3DCentroid (const pcl::PointCloud< PointT > &cloud, Eigen::Vector4f ¢roid) |
template<typename PointT > | |
unsigned int | compute3DCentroid (const pcl::PointCloud< PointT > &cloud, Eigen::Vector4d ¢roid) |
template<typename PointT , typename Scalar > | |
unsigned int | compute3DCentroid (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, Eigen::Matrix< Scalar, 4, 1 > ¢roid) |
Compute the 3D (X-Y-Z) centroid of a set of points using their indices and return it as a 3D vector. | |
template<typename PointT > | |
unsigned int | compute3DCentroid (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, Eigen::Vector4f ¢roid) |
template<typename PointT > | |
unsigned int | compute3DCentroid (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, Eigen::Vector4d ¢roid) |
template<typename PointT , typename Scalar > | |
unsigned int | compute3DCentroid (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, Eigen::Matrix< Scalar, 4, 1 > ¢roid) |
Compute the 3D (X-Y-Z) centroid of a set of points using their indices and return it as a 3D vector. | |
template<typename PointT > | |
unsigned int | compute3DCentroid (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, Eigen::Vector4f ¢roid) |
template<typename PointT > | |
unsigned int | compute3DCentroid (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, Eigen::Vector4d ¢roid) |
template<typename Matrix , typename Vector > | |
void | computeCorrespondingEigenVector (const Matrix &mat, const typename Matrix::Scalar &eigenvalue, Vector &eigenvector) |
determines the corresponding eigenvector to the given eigenvalue of the symmetric positive semi definite input matrix | |
template<typename PointT , typename Scalar > | |
unsigned int | computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const Eigen::Matrix< Scalar, 4, 1 > ¢roid, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix) |
Compute the 3x3 covariance matrix of a given set of points. The result is returned as a Eigen::Matrix3f. Note: the covariance matrix is not normalized with the number of points. For a normalized covariance, please use computeNormalizedCovarianceMatrix. | |
template<typename PointT > | |
unsigned int | computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const Eigen::Vector4f ¢roid, Eigen::Matrix3f &covariance_matrix) |
template<typename PointT > | |
unsigned int | computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const Eigen::Vector4d ¢roid, Eigen::Matrix3d &covariance_matrix) |
template<typename PointT , typename Scalar > | |
unsigned int | computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, const Eigen::Matrix< Scalar, 4, 1 > ¢roid, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix) |
Compute the 3x3 covariance matrix of a given set of points using their indices. The result is returned as a Eigen::Matrix3f. Note: the covariance matrix is not normalized with the number of points. For a normalized covariance, please use computeNormalizedCovarianceMatrix. | |
template<typename PointT > | |
unsigned int | computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, const Eigen::Vector4f ¢roid, Eigen::Matrix3f &covariance_matrix) |
template<typename PointT > | |
unsigned int | computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, const Eigen::Vector4d ¢roid, Eigen::Matrix3d &covariance_matrix) |
template<typename PointT , typename Scalar > | |
unsigned int | computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, const Eigen::Matrix< Scalar, 4, 1 > ¢roid, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix) |
Compute the 3x3 covariance matrix of a given set of points using their indices. The result is returned as a Eigen::Matrix3f. Note: the covariance matrix is not normalized with the number of points. For a normalized covariance, please use computeNormalizedCovarianceMatrix. | |
template<typename PointT > | |
unsigned int | computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, const Eigen::Vector4f ¢roid, Eigen::Matrix3f &covariance_matrix) |
template<typename PointT > | |
unsigned int | computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, const Eigen::Vector4d ¢roid, Eigen::Matrix3d &covariance_matrix) |
template<typename PointT , typename Scalar > | |
unsigned int | computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix) |
Compute the normalized 3x3 covariance matrix for a already demeaned point cloud. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function. | |
template<typename PointT > | |
unsigned int | computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, Eigen::Matrix3f &covariance_matrix) |
template<typename PointT > | |
unsigned int | computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, Eigen::Matrix3d &covariance_matrix) |
template<typename PointT , typename Scalar > | |
unsigned int | computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix) |
Compute the normalized 3x3 covariance matrix for a already demeaned point cloud. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function. | |
template<typename PointT > | |
unsigned int | computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, Eigen::Matrix3f &covariance_matrix) |
template<typename PointT > | |
unsigned int | computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, Eigen::Matrix3d &covariance_matrix) |
template<typename PointT , typename Scalar > | |
unsigned int | computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix) |
Compute the normalized 3x3 covariance matrix for a already demeaned point cloud. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function. | |
template<typename PointT > | |
unsigned int | computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, Eigen::Matrix3f &covariance_matrix) |
template<typename PointT > | |
unsigned int | computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, Eigen::Matrix3d &covariance_matrix) |
template<typename PointT , typename Scalar > | |
unsigned int | computeCovarianceMatrixNormalized (const pcl::PointCloud< PointT > &cloud, const Eigen::Matrix< Scalar, 4, 1 > ¢roid, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix) |
Compute normalized the 3x3 covariance matrix of a given set of points. The result is returned as a Eigen::Matrix3f. Normalized means that every entry has been divided by the number of points in the point cloud. For small number of points, or if you want explicitely the sample-variance, use computeCovarianceMatrix and scale the covariance matrix with 1 / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by the computeCovarianceMatrix function. | |
template<typename PointT > | |
unsigned int | computeCovarianceMatrixNormalized (const pcl::PointCloud< PointT > &cloud, const Eigen::Vector4f ¢roid, Eigen::Matrix3f &covariance_matrix) |
template<typename PointT > | |
unsigned int | computeCovarianceMatrixNormalized (const pcl::PointCloud< PointT > &cloud, const Eigen::Vector4d ¢roid, Eigen::Matrix3d &covariance_matrix) |
template<typename PointT , typename Scalar > | |
unsigned int | computeCovarianceMatrixNormalized (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, const Eigen::Matrix< Scalar, 4, 1 > ¢roid, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix) |
Compute the normalized 3x3 covariance matrix of a given set of points using their indices. The result is returned as a Eigen::Matrix3f. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, use computeCovarianceMatrix and scale the covariance matrix with 1 / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by the computeCovarianceMatrix function. | |
template<typename PointT > | |
unsigned int | computeCovarianceMatrixNormalized (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, const Eigen::Vector4f ¢roid, Eigen::Matrix3f &covariance_matrix) |
template<typename PointT > | |
unsigned int | computeCovarianceMatrixNormalized (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, const Eigen::Vector4d ¢roid, Eigen::Matrix3d &covariance_matrix) |
template<typename PointT , typename Scalar > | |
unsigned int | computeCovarianceMatrixNormalized (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, const Eigen::Matrix< Scalar, 4, 1 > ¢roid, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix) |
Compute the normalized 3x3 covariance matrix of a given set of points using their indices. The result is returned as a Eigen::Matrix3f. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, use computeCovarianceMatrix and scale the covariance matrix with 1 / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by the computeCovarianceMatrix function. | |
template<typename PointT > | |
unsigned int | computeCovarianceMatrixNormalized (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, const Eigen::Vector4f ¢roid, Eigen::Matrix3f &covariance_matrix) |
template<typename PointT > | |
unsigned int | computeCovarianceMatrixNormalized (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, const Eigen::Vector4d ¢roid, Eigen::Matrix3d &covariance_matrix) |
template<typename PointT , typename Scalar > | |
unsigned int | computeMeanAndCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix, Eigen::Matrix< Scalar, 4, 1 > ¢roid) |
Compute the normalized 3x3 covariance matrix and the centroid of a given set of points in a single loop. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function. | |
template<typename PointT > | |
unsigned int | computeMeanAndCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, Eigen::Matrix3f &covariance_matrix, Eigen::Vector4f ¢roid) |
template<typename PointT > | |
unsigned int | computeMeanAndCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, Eigen::Matrix3d &covariance_matrix, Eigen::Vector4d ¢roid) |
template<typename PointT , typename Scalar > | |
unsigned int | computeMeanAndCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix, Eigen::Matrix< Scalar, 4, 1 > ¢roid) |
Compute the normalized 3x3 covariance matrix and the centroid of a given set of points in a single loop. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function. | |
template<typename PointT > | |
unsigned int | computeMeanAndCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, Eigen::Matrix3f &covariance_matrix, Eigen::Vector4f ¢roid) |
template<typename PointT > | |
unsigned int | computeMeanAndCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, Eigen::Matrix3d &covariance_matrix, Eigen::Vector4d ¢roid) |
template<typename PointT , typename Scalar > | |
unsigned int | computeMeanAndCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix, Eigen::Matrix< Scalar, 4, 1 > ¢roid) |
Compute the normalized 3x3 covariance matrix and the centroid of a given set of points in a single loop. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function. | |
template<typename PointT > | |
unsigned int | computeMeanAndCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, Eigen::Matrix3f &covariance_matrix, Eigen::Vector4f ¢roid) |
template<typename PointT > | |
unsigned int | computeMeanAndCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, Eigen::Matrix3d &covariance_matrix, Eigen::Vector4d ¢roid) |
template<typename PointT , typename Scalar > | |
void | computeNDCentroid (const pcl::PointCloud< PointT > &cloud, Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > ¢roid) |
General, all purpose nD centroid estimation for a set of points using their indices. | |
template<typename PointT > | |
void | computeNDCentroid (const pcl::PointCloud< PointT > &cloud, Eigen::VectorXf ¢roid) |
template<typename PointT > | |
void | computeNDCentroid (const pcl::PointCloud< PointT > &cloud, Eigen::VectorXd ¢roid) |
template<typename PointT , typename Scalar > | |
void | computeNDCentroid (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > ¢roid) |
General, all purpose nD centroid estimation for a set of points using their indices. | |
template<typename PointT > | |
void | computeNDCentroid (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, Eigen::VectorXf ¢roid) |
template<typename PointT > | |
void | computeNDCentroid (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, Eigen::VectorXd ¢roid) |
template<typename PointT , typename Scalar > | |
void | computeNDCentroid (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > ¢roid) |
General, all purpose nD centroid estimation for a set of points using their indices. | |
template<typename PointT > | |
void | computeNDCentroid (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, Eigen::VectorXf ¢roid) |
template<typename PointT > | |
void | computeNDCentroid (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, Eigen::VectorXd ¢roid) |
PCL_EXPORTS bool | computePairFeatures (const Eigen::Vector4f &p1, const Eigen::Vector4f &n1, const Eigen::Vector4f &p2, const Eigen::Vector4f &n2, float &f1, float &f2, float &f3, float &f4) |
Compute the 4-tuple representation containing the three angles and one distance between two points represented by Cartesian coordinates and normals. | |
template<typename PointT > | |
void | computePointNormal (const pcl::PointCloud< PointT > &cloud, Eigen::Vector4f &plane_parameters, float &curvature) |
Compute the Least-Squares plane fit for a given set of points, and return the estimated plane parameters together with the surface curvature. | |
template<typename PointT > | |
void | computePointNormal (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, Eigen::Vector4f &plane_parameters, float &curvature) |
Compute the Least-Squares plane fit for a given set of points, using their indices, and return the estimated plane parameters together with the surface curvature. | |
PCL_EXPORTS bool | computePPFPairFeature (const Eigen::Vector4f &p1, const Eigen::Vector4f &n1, const Eigen::Vector4f &p2, const Eigen::Vector4f &n2, float &f1, float &f2, float &f3, float &f4) |
PCL_EXPORTS bool | computeRGBPairFeatures (const Eigen::Vector4f &p1, const Eigen::Vector4f &n1, const Eigen::Vector4i &colors1, const Eigen::Vector4f &p2, const Eigen::Vector4f &n2, const Eigen::Vector4i &colors2, float &f1, float &f2, float &f3, float &f4, float &f5, float &f6, float &f7) |
template<typename Matrix , typename Roots > | |
void | computeRoots (const Matrix &m, Roots &roots) |
computes the roots of the characteristic polynomial of the input matrix m, which are the eigenvalues | |
template<typename Scalar , typename Roots > | |
void | computeRoots2 (const Scalar &b, const Scalar &c, Roots &roots) |
Compute the roots of a quadratic polynom x^2 + b*x + c = 0. | |
template<typename PointInT , typename PointNT , typename PointOutT > | |
Eigen::MatrixXf | computeRSD (boost::shared_ptr< const pcl::PointCloud< PointInT > > &surface, boost::shared_ptr< const pcl::PointCloud< PointNT > > &normals, const std::vector< int > &indices, double max_dist, int nr_subdiv, double plane_radius, PointOutT &radii, bool compute_histogram=false) |
Estimate the Radius-based Surface Descriptor (RSD) for a given point based on its spatial neighborhood of 3D points with normals. | |
template<typename PointNT , typename PointOutT > | |
Eigen::MatrixXf | computeRSD (boost::shared_ptr< const pcl::PointCloud< PointNT > > &normals, const std::vector< int > &indices, const std::vector< float > &sqr_dists, double max_dist, int nr_subdiv, double plane_radius, PointOutT &radii, bool compute_histogram=false) |
Estimate the Radius-based Surface Descriptor (RSD) for a given point based on its spatial neighborhood of 3D points with normals. | |
template<typename PointT > | |
pcl::PointCloud < pcl::VFHSignature308 >::Ptr | computeVFH (typename PointCloud< PointT >::ConstPtr cloud, double radius) |
Helper function to extract the VFH feature describing the given point cloud. | |
template<typename PointIn1T , typename PointIn2T , typename PointOutT > | |
void | concatenateFields (const pcl::PointCloud< PointIn1T > &cloud1_in, const pcl::PointCloud< PointIn2T > &cloud2_in, pcl::PointCloud< PointOutT > &cloud_out) |
Concatenate two datasets representing different fields. | |
PCL_EXPORTS bool | concatenateFields (const pcl::PCLPointCloud2 &cloud1_in, const pcl::PCLPointCloud2 &cloud2_in, pcl::PCLPointCloud2 &cloud_out) |
Concatenate two datasets representing different fields. | |
PCL_EXPORTS bool | concatenatePointCloud (const pcl::PCLPointCloud2 &cloud1, const pcl::PCLPointCloud2 &cloud2, pcl::PCLPointCloud2 &cloud_out) |
Concatenate two pcl::PCLPointCloud2. | |
PCL_EXPORTS void | copyPointCloud (const pcl::PCLPointCloud2 &cloud_in, const std::vector< int > &indices, pcl::PCLPointCloud2 &cloud_out) |
Extract the indices of a given point cloud as a new point cloud. | |
PCL_EXPORTS void | copyPointCloud (const pcl::PCLPointCloud2 &cloud_in, const std::vector< int, Eigen::aligned_allocator< int > > &indices, pcl::PCLPointCloud2 &cloud_out) |
Extract the indices of a given point cloud as a new point cloud. | |
PCL_EXPORTS void | copyPointCloud (const pcl::PCLPointCloud2 &cloud_in, pcl::PCLPointCloud2 &cloud_out) |
Copy fields and point cloud data from cloud_in to cloud_out. | |
template<typename PointT > | |
void | copyPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, pcl::PointCloud< PointT > &cloud_out) |
Extract the indices of a given point cloud as a new point cloud. | |
template<typename PointT > | |
void | copyPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int, Eigen::aligned_allocator< int > > &indices, pcl::PointCloud< PointT > &cloud_out) |
Extract the indices of a given point cloud as a new point cloud. | |
template<typename PointT > | |
void | copyPointCloud (const pcl::PointCloud< PointT > &cloud_in, const PointIndices &indices, pcl::PointCloud< PointT > &cloud_out) |
Extract the indices of a given point cloud as a new point cloud. | |
template<typename PointT > | |
void | copyPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< pcl::PointIndices > &indices, pcl::PointCloud< PointT > &cloud_out) |
Extract the indices of a given point cloud as a new point cloud. | |
template<typename PointInT , typename PointOutT > | |
void | copyPointCloud (const pcl::PointCloud< PointInT > &cloud_in, pcl::PointCloud< PointOutT > &cloud_out) |
Copy all the fields from a given point cloud into a new point cloud. | |
template<typename PointInT , typename PointOutT > | |
void | copyPointCloud (const pcl::PointCloud< PointInT > &cloud_in, const std::vector< int > &indices, pcl::PointCloud< PointOutT > &cloud_out) |
Extract the indices of a given point cloud as a new point cloud. | |
template<typename PointInT , typename PointOutT > | |
void | copyPointCloud (const pcl::PointCloud< PointInT > &cloud_in, const std::vector< int, Eigen::aligned_allocator< int > > &indices, pcl::PointCloud< PointOutT > &cloud_out) |
Extract the indices of a given point cloud as a new point cloud. | |
template<typename PointInT , typename PointOutT > | |
void | copyPointCloud (const pcl::PointCloud< PointInT > &cloud_in, const PointIndices &indices, pcl::PointCloud< PointOutT > &cloud_out) |
Extract the indices of a given point cloud as a new point cloud. | |
template<typename PointInT , typename PointOutT > | |
void | copyPointCloud (const pcl::PointCloud< PointInT > &cloud_in, const std::vector< pcl::PointIndices > &indices, pcl::PointCloud< PointOutT > &cloud_out) |
Extract the indices of a given point cloud as a new point cloud. | |
template<typename Type > | |
void | copyStringValue (const std::string &st, pcl::PCLPointCloud2 &cloud, unsigned int point_index, unsigned int field_idx, unsigned int fields_count) |
Copy one single value of type T (uchar, char, uint, int, float, double, ...) from a string. | |
template<> | |
void | copyStringValue< int8_t > (const std::string &st, pcl::PCLPointCloud2 &cloud, unsigned int point_index, unsigned int field_idx, unsigned int fields_count) |
template<> | |
void | copyStringValue< uint8_t > (const std::string &st, pcl::PCLPointCloud2 &cloud, unsigned int point_index, unsigned int field_idx, unsigned int fields_count) |
template<typename Type > | |
void | copyValueString (const pcl::PCLPointCloud2 &cloud, const unsigned int point_index, const int point_size, const unsigned int field_idx, const unsigned int fields_count, std::ostream &stream) |
insers a value of type Type (uchar, char, uint, int, float, double, ...) into a stringstream. | |
template<> | |
void | copyValueString< int8_t > (const pcl::PCLPointCloud2 &cloud, const unsigned int point_index, const int point_size, const unsigned int field_idx, const unsigned int fields_count, std::ostream &stream) |
template<> | |
void | copyValueString< uint8_t > (const pcl::PCLPointCloud2 &cloud, const unsigned int point_index, const int point_size, const unsigned int field_idx, const unsigned int fields_count, std::ostream &stream) |
template<typename PointT > | |
void | createMapping (const std::vector< pcl::PCLPointField > &msg_fields, MsgFieldMap &field_map) |
template<typename FloatVectorT > | |
float | CS_Norm (FloatVectorT A, FloatVectorT B, int dim) |
Compute the CS norm of the vector between two points. | |
float | deg2rad (float alpha) |
Convert an angle from degrees to radians. | |
double | deg2rad (double alpha) |
Convert an angle from degrees to radians. | |
template<typename PointT , typename Scalar > | |
void | demeanPointCloud (ConstCloudIterator< PointT > &cloud_iterator, const Eigen::Matrix< Scalar, 4, 1 > ¢roid, pcl::PointCloud< PointT > &cloud_out, int npts=0) |
Subtract a centroid from a point cloud and return the de-meaned representation. | |
template<typename PointT > | |
void | demeanPointCloud (ConstCloudIterator< PointT > &cloud_iterator, const Eigen::Vector4f ¢roid, pcl::PointCloud< PointT > &cloud_out, int npts=0) |
template<typename PointT > | |
void | demeanPointCloud (ConstCloudIterator< PointT > &cloud_iterator, const Eigen::Vector4d ¢roid, pcl::PointCloud< PointT > &cloud_out, int npts=0) |
template<typename PointT , typename Scalar > | |
void | demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const Eigen::Matrix< Scalar, 4, 1 > ¢roid, pcl::PointCloud< PointT > &cloud_out) |
Subtract a centroid from a point cloud and return the de-meaned representation. | |
template<typename PointT > | |
void | demeanPointCloud (ConstCloudIterator< PointT > &cloud_iterator, const Eigen::Vector4f ¢roid, pcl::PointCloud< PointT > &cloud_out) |
template<typename PointT > | |
void | demeanPointCloud (ConstCloudIterator< PointT > &cloud_iterator, const Eigen::Vector4d ¢roid, pcl::PointCloud< PointT > &cloud_out) |
template<typename PointT , typename Scalar > | |
void | demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, const Eigen::Matrix< Scalar, 4, 1 > ¢roid, pcl::PointCloud< PointT > &cloud_out) |
Subtract a centroid from a point cloud and return the de-meaned representation. | |
template<typename PointT > | |
void | demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, const Eigen::Vector4f ¢roid, pcl::PointCloud< PointT > &cloud_out) |
template<typename PointT > | |
void | demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, const Eigen::Vector4d ¢roid, pcl::PointCloud< PointT > &cloud_out) |
template<typename PointT , typename Scalar > | |
void | demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const pcl::PointIndices &indices, const Eigen::Matrix< Scalar, 4, 1 > ¢roid, pcl::PointCloud< PointT > &cloud_out) |
Subtract a centroid from a point cloud and return the de-meaned representation. | |
template<typename PointT > | |
void | demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const pcl::PointIndices &indices, const Eigen::Vector4f ¢roid, pcl::PointCloud< PointT > &cloud_out) |
template<typename PointT > | |
void | demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const pcl::PointIndices &indices, const Eigen::Vector4d ¢roid, pcl::PointCloud< PointT > &cloud_out) |
template<typename PointT , typename Scalar > | |
void | demeanPointCloud (ConstCloudIterator< PointT > &cloud_iterator, const Eigen::Matrix< Scalar, 4, 1 > ¢roid, Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > &cloud_out, int npts=0) |
Subtract a centroid from a point cloud and return the de-meaned representation as an Eigen matrix. | |
template<typename PointT > | |
void | demeanPointCloud (ConstCloudIterator< PointT > &cloud_iterator, const Eigen::Vector4f ¢roid, Eigen::MatrixXf &cloud_out, int npts=0) |
template<typename PointT > | |
void | demeanPointCloud (ConstCloudIterator< PointT > &cloud_iterator, const Eigen::Vector4d ¢roid, Eigen::MatrixXd &cloud_out, int npts=0) |
template<typename PointT , typename Scalar > | |
void | demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const Eigen::Matrix< Scalar, 4, 1 > ¢roid, Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > &cloud_out) |
Subtract a centroid from a point cloud and return the de-meaned representation as an Eigen matrix. | |
template<typename PointT > | |
void | demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const Eigen::Vector4f ¢roid, Eigen::MatrixXf &cloud_out) |
template<typename PointT > | |
void | demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const Eigen::Vector4d ¢roid, Eigen::MatrixXd &cloud_out) |
template<typename PointT , typename Scalar > | |
void | demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, const Eigen::Matrix< Scalar, 4, 1 > ¢roid, Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > &cloud_out) |
Subtract a centroid from a point cloud and return the de-meaned representation as an Eigen matrix. | |
template<typename PointT > | |
void | demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, const Eigen::Vector4f ¢roid, Eigen::MatrixXf &cloud_out) |
template<typename PointT > | |
void | demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, const Eigen::Vector4d ¢roid, Eigen::MatrixXd &cloud_out) |
template<typename PointT , typename Scalar > | |
void | demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const pcl::PointIndices &indices, const Eigen::Matrix< Scalar, 4, 1 > ¢roid, Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > &cloud_out) |
Subtract a centroid from a point cloud and return the de-meaned representation as an Eigen matrix. | |
template<typename PointT > | |
void | demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const pcl::PointIndices &indices, const Eigen::Vector4f ¢roid, Eigen::MatrixXf &cloud_out) |
template<typename PointT > | |
void | demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const pcl::PointIndices &indices, const Eigen::Vector4d ¢roid, Eigen::MatrixXd &cloud_out) |
template<typename Matrix > | |
Matrix::Scalar | determinant3x3Matrix (const Matrix &matrix) |
template<typename FloatVectorT > | |
float | Div_Norm (FloatVectorT A, FloatVectorT B, int dim) |
Compute the div norm of the vector between two points. | |
template<typename Matrix , typename Vector > | |
void | eigen22 (const Matrix &mat, typename Matrix::Scalar &eigenvalue, Vector &eigenvector) |
determine the smallest eigenvalue and its corresponding eigenvector | |
template<typename Matrix , typename Vector > | |
void | eigen22 (const Matrix &mat, Matrix &eigenvectors, Vector &eigenvalues) |
determine the smallest eigenvalue and its corresponding eigenvector | |
template<typename Matrix , typename Vector > | |
void | eigen33 (const Matrix &mat, typename Matrix::Scalar &eigenvalue, Vector &eigenvector) |
determines the eigenvector and eigenvalue of the smallest eigenvalue of the symmetric positive semi definite input matrix | |
template<typename Matrix , typename Vector > | |
void | eigen33 (const Matrix &mat, Vector &evals) |
determines the eigenvalues of the symmetric positive semi definite input matrix | |
template<typename Matrix , typename Vector > | |
void | eigen33 (const Matrix &mat, Matrix &evecs, Vector &evals) |
determines the eigenvalues and corresponding eigenvectors of the symmetric positive semi definite input matrix | |
template<typename PointT > | |
double | estimateProjectionMatrix (typename pcl::PointCloud< PointT >::ConstPtr cloud, Eigen::Matrix< float, 3, 4, Eigen::RowMajor > &projection_matrix, const std::vector< int > &indices=std::vector< int >()) |
Estimates the projection matrix P = K * (R|-R*t) from organized point clouds, with K = [[fx, s, cx], [0, fy, cy], [0, 0, 1]] R = rotation matrix and t = translation vector. | |
template<typename PointType1 , typename PointType2 > | |
float | euclideanDistance (const PointType1 &p1, const PointType2 &p2) |
Calculate the euclidean distance between the two given points. | |
template<typename PointT > | |
void | extractEuclideanClusters (const PointCloud< PointT > &cloud, const boost::shared_ptr< search::Search< PointT > > &tree, float tolerance, std::vector< PointIndices > &clusters, unsigned int min_pts_per_cluster=1, unsigned int max_pts_per_cluster=(std::numeric_limits< int >::max)()) |
Decompose a region of space into clusters based on the Euclidean distance between points. | |
template<typename PointT > | |
void | extractEuclideanClusters (const PointCloud< PointT > &cloud, const std::vector< int > &indices, const boost::shared_ptr< search::Search< PointT > > &tree, float tolerance, std::vector< PointIndices > &clusters, unsigned int min_pts_per_cluster=1, unsigned int max_pts_per_cluster=(std::numeric_limits< int >::max)()) |
Decompose a region of space into clusters based on the Euclidean distance between points. | |
template<typename PointT , typename Normal > | |
void | extractEuclideanClusters (const PointCloud< PointT > &cloud, const PointCloud< Normal > &normals, float tolerance, const boost::shared_ptr< KdTree< PointT > > &tree, std::vector< PointIndices > &clusters, double eps_angle, unsigned int min_pts_per_cluster=1, unsigned int max_pts_per_cluster=(std::numeric_limits< int >::max)()) |
Decompose a region of space into clusters based on the euclidean distance between points, and the normal angular deviation. | |
template<typename PointT , typename Normal > | |
void | extractEuclideanClusters (const PointCloud< PointT > &cloud, const PointCloud< Normal > &normals, const std::vector< int > &indices, const boost::shared_ptr< KdTree< PointT > > &tree, float tolerance, std::vector< PointIndices > &clusters, double eps_angle, unsigned int min_pts_per_cluster=1, unsigned int max_pts_per_cluster=(std::numeric_limits< int >::max)()) |
Decompose a region of space into clusters based on the euclidean distance between points, and the normal angular deviation. | |
template<typename PointT > | |
void | extractLabeledEuclideanClusters (const PointCloud< PointT > &cloud, const boost::shared_ptr< search::Search< PointT > > &tree, float tolerance, std::vector< std::vector< PointIndices > > &labeled_clusters, unsigned int min_pts_per_cluster=1, unsigned int max_pts_per_cluster=std::numeric_limits< unsigned int >::max(), unsigned int max_label=std::numeric_limits< unsigned int >::max()) |
Decompose a region of space into clusters based on the Euclidean distance between points. | |
template<typename PointT , typename Scalar > | |
void | flipNormalTowardsViewpoint (const PointT &point, float vp_x, float vp_y, float vp_z, Eigen::Matrix< Scalar, 4, 1 > &normal) |
Flip (in place) the estimated normal of a point towards a given viewpoint. | |
template<typename PointT , typename Scalar > | |
void | flipNormalTowardsViewpoint (const PointT &point, float vp_x, float vp_y, float vp_z, Eigen::Matrix< Scalar, 3, 1 > &normal) |
Flip (in place) the estimated normal of a point towards a given viewpoint. | |
template<typename PointT > | |
void | flipNormalTowardsViewpoint (const PointT &point, float vp_x, float vp_y, float vp_z, float &nx, float &ny, float &nz) |
Flip (in place) the estimated normal of a point towards a given viewpoint. | |
template<typename Sequence , typename F > | |
void | for_each_type (F f) |
template<typename PointT > | |
void | fromPCLPointCloud2 (const pcl::PCLPointCloud2 &msg, pcl::PointCloud< PointT > &cloud, const MsgFieldMap &field_map) |
Convert a PCLPointCloud2 binary data blob into a pcl::PointCloud<T> object using a field_map. | |
template<typename PointT > | |
void | fromPCLPointCloud2 (const pcl::PCLPointCloud2 &msg, pcl::PointCloud< PointT > &cloud) |
Convert a PCLPointCloud2 binary data blob into a pcl::PointCloud<T> object. | |
template<typename PointT > | |
void | fromROSMsg (const pcl::PCLPointCloud2 &msg, pcl::PointCloud< PointT > &cloud, const MsgFieldMap &field_map) |
template<typename PointT > | |
void | fromROSMsg (const pcl::PCLPointCloud2 &msg, pcl::PointCloud< PointT > &cloud) |
Eigen::MatrixXi | getAllNeighborCellIndices () |
Get the relative cell indices of all the 26 neighbors. | |
void | getAllPcdFilesInDirectory (const std::string &directory, std::vector< std::string > &file_names) |
Find all *.pcd files in the directory and return them sorted. | |
double | getAngle3D (const Eigen::Vector4f &v1, const Eigen::Vector4f &v2) |
Compute the smallest angle between two vectors in the [ 0, PI ) interval in 3D. | |
template<typename PointT > | |
void | getApproximateIndices (const typename pcl::PointCloud< PointT >::Ptr &cloud_in, const typename pcl::PointCloud< PointT >::Ptr &cloud_ref, std::vector< int > &indices) |
Get a set of approximate indices for a given point cloud into a reference point cloud. The coordinates of the two point clouds can differ. The method uses an internal KdTree for finding the closest neighbors from cloud_in in cloud_ref. | |
template<typename Point1T , typename Point2T > | |
void | getApproximateIndices (const typename pcl::PointCloud< Point1T >::Ptr &cloud_in, const typename pcl::PointCloud< Point2T >::Ptr &cloud_ref, std::vector< int > &indices) |
Get a set of approximate indices for a given point cloud into a reference point cloud. The coordinates of the two point clouds can differ. The method uses an internal KdTree for finding the closest neighbors from cloud_in in cloud_ref. | |
PCL_EXPORTS void | getCameraMatrixFromProjectionMatrix (const Eigen::Matrix< float, 3, 4, Eigen::RowMajor > &projection_matrix, Eigen::Matrix3f &camera_matrix) |
Determines the camera matrix from the given projection matrix. | |
template<typename PointT > | |
double | getCircumcircleRadius (const PointT &pa, const PointT &pb, const PointT &pc) |
Compute the radius of a circumscribed circle for a triangle formed of three points pa, pb, and pc. | |
PCL_EXPORTS bool | getEigenAsPointCloud (Eigen::MatrixXf &in, pcl::PCLPointCloud2 &out) |
Copy the XYZ dimensions from an Eigen MatrixXf into a pcl::PCLPointCloud2 message. | |
void | getEulerAngles (const Eigen::Affine3f &t, float &roll, float &pitch, float &yaw) |
Extract the Euler angles (XYZ-convention) from the given transformation. | |
template<int N> | |
void | getFeaturePointCloud (const std::vector< Eigen::MatrixXf, Eigen::aligned_allocator< Eigen::MatrixXf > > &histograms2D, PointCloud< Histogram< N > > &histogramsPC) |
Transform a list of 2D matrices into a point cloud containing the values in a vector (Histogram<N>). Can be used to transform the 2D histograms obtained in RSDEstimation into a point cloud. | |
int | getFieldIndex (const pcl::PCLPointCloud2 &cloud, const std::string &field_name) |
Get the index of a specified field (i.e., dimension/channel) | |
template<typename PointT > | |
int | getFieldIndex (const pcl::PointCloud< PointT > &cloud, const std::string &field_name, std::vector< pcl::PCLPointField > &fields) |
Get the index of a specified field (i.e., dimension/channel) | |
template<typename PointT > | |
int | getFieldIndex (const std::string &field_name, std::vector< pcl::PCLPointField > &fields) |
Get the index of a specified field (i.e., dimension/channel) | |
template<typename PointT > | |
void | getFields (const pcl::PointCloud< PointT > &cloud, std::vector< pcl::PCLPointField > &fields) |
Get the list of available fields (i.e., dimension/channel) | |
template<typename PointT > | |
void | getFields (std::vector< pcl::PCLPointField > &fields) |
Get the list of available fields (i.e., dimension/channel) | |
int | getFieldSize (const int datatype) |
Obtains the size of a specific field data type in bytes. | |
template<typename PointT > | |
std::string | getFieldsList (const pcl::PointCloud< PointT > &cloud) |
Get the list of all fields available in a given cloud. | |
std::string | getFieldsList (const pcl::PCLPointCloud2 &cloud) |
Get the available point cloud fields as a space separated string. | |
PCL_EXPORTS void | getFieldsSizes (const std::vector< pcl::PCLPointField > &fields, std::vector< int > &field_sizes) |
Obtain a vector with the sizes of all valid fields (e.g., not "_") | |
int | getFieldType (const int size, char type) |
Obtains the type of the PCLPointField from a specific size and type. | |
char | getFieldType (const int type) |
Obtains the type of the PCLPointField from a specific PCLPointField as a char. | |
template<typename PointT , typename ValT > | |
void | getFieldValue (const PointT &pt, size_t field_offset, ValT &value) |
Get the value at a specified field in a point. | |
std::string | getFileExtension (const std::string &input) |
Get the file extension from the given string (the remaining string after the last '.') | |
std::string | getFilenameWithoutExtension (const std::string &input) |
Remove the extension from the given string and return only the filename (everything before the last '.') | |
std::string | getFilenameWithoutPath (const std::string &input) |
Remove the path from the given string and return only the filename (the remaining string after the last '/') | |
Eigen::MatrixXi | getHalfNeighborCellIndices () |
Get the relative cell indices of the "upper half" 13 neighbors. | |
template<typename PointT > | |
void | getMaxDistance (const pcl::PointCloud< PointT > &cloud, const Eigen::Vector4f &pivot_pt, Eigen::Vector4f &max_pt) |
Get the point at maximum distance from a given point and a given pointcloud. | |
template<typename PointT > | |
void | getMaxDistance (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, const Eigen::Vector4f &pivot_pt, Eigen::Vector4f &max_pt) |
Get the point at maximum distance from a given point and a given pointcloud. | |
template<typename PointT > | |
double | getMaxSegment (const pcl::PointCloud< PointT > &cloud, PointT &pmin, PointT &pmax) |
Obtain the maximum segment in a given set of points, and return the minimum and maximum points. | |
template<typename PointT > | |
double | getMaxSegment (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, PointT &pmin, PointT &pmax) |
Obtain the maximum segment in a given set of points, and return the minimum and maximum points. | |
void | getMeanStd (const std::vector< float > &values, double &mean, double &stddev) |
Compute both the mean and the standard deviation of an array of values. | |
PCL_EXPORTS void | getMeanStdDev (const std::vector< float > &values, double &mean, double &stddev) |
Compute both the mean and the standard deviation of an array of values. | |
template<typename PointT > | |
void | getMinMax (const PointT &histogram, int len, float &min_p, float &max_p) |
Get the minimum and maximum values on a point histogram. | |
PCL_EXPORTS void | getMinMax (const pcl::PCLPointCloud2 &cloud, int idx, const std::string &field_name, float &min_p, float &max_p) |
Get the minimum and maximum values on a point histogram. | |
PCL_EXPORTS void | getMinMax3D (const pcl::PCLPointCloud2ConstPtr &cloud, int x_idx, int y_idx, int z_idx, Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt) |
Obtain the maximum and minimum points in 3D from a given point cloud. | |
PCL_EXPORTS void | getMinMax3D (const pcl::PCLPointCloud2ConstPtr &cloud, int x_idx, int y_idx, int z_idx, const std::string &distance_field_name, float min_distance, float max_distance, Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt, bool limit_negative=false) |
Obtain the maximum and minimum points in 3D from a given point cloud. | |
template<typename PointT > | |
void | getMinMax3D (const pcl::PointCloud< PointT > &cloud, PointT &min_pt, PointT &max_pt) |
Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud. | |
template<typename PointT > | |
void | getMinMax3D (const pcl::PointCloud< PointT > &cloud, Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt) |
Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud. | |
template<typename PointT > | |
void | getMinMax3D (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt) |
Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud. | |
template<typename PointT > | |
void | getMinMax3D (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt) |
Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud. | |
template<typename PointT > | |
void | getMinMax3D (const typename pcl::PointCloud< PointT >::ConstPtr &cloud, const std::string &distance_field_name, float min_distance, float max_distance, Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt, bool limit_negative=false) |
Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud, without considering points outside of a distance threshold from the laser origin. | |
template<typename PointT > | |
void | getMinMax3D (const typename pcl::PointCloud< PointT >::ConstPtr &cloud, const std::vector< int > &indices, const std::string &distance_field_name, float min_distance, float max_distance, Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt, bool limit_negative=false) |
Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud, without considering points outside of a distance threshold from the laser origin. | |
PCL_EXPORTS bool | getPointCloudAsEigen (const pcl::PCLPointCloud2 &in, Eigen::MatrixXf &out) |
Copy the XYZ dimensions of a pcl::PCLPointCloud2 into Eigen format. | |
template<typename PointT > | |
void | getPointCloudDifference (const pcl::PointCloud< PointT > &src, const pcl::PointCloud< PointT > &tgt, double threshold, const boost::shared_ptr< pcl::search::Search< PointT > > &tree, pcl::PointCloud< PointT > &output) |
Obtain the difference between two aligned point clouds as another point cloud, given a distance threshold. | |
template<typename PointT > | |
void | getPointsInBox (const pcl::PointCloud< PointT > &cloud, Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt, std::vector< int > &indices) |
Get a set of points residing in a box given its bounds. | |
template<typename PointT , typename Scalar > | |
double | getPrincipalTransformation (const pcl::PointCloud< PointT > &cloud, Eigen::Transform< Scalar, 3, Eigen::Affine > &transform) |
Calculates the principal (PCA-based) alignment of the point cloud. | |
template<typename PointT > | |
double | getPrincipalTransformation (const pcl::PointCloud< PointT > &cloud, Eigen::Affine3f &transform) |
void | getRejectedQueryIndices (const pcl::Correspondences &correspondences_before, const pcl::Correspondences &correspondences_after, std::vector< int > &indices, bool presorting_required=true) |
Get the query points of correspondences that are present in one correspondence vector but not in the other, e.g., to compare correspondences before and after rejection. | |
double | getTime () |
template<typename Scalar > | |
void | getTransformation (Scalar x, Scalar y, Scalar z, Scalar roll, Scalar pitch, Scalar yaw, Eigen::Transform< Scalar, 3, Eigen::Affine > &t) |
Create a transformation from the given translation and Euler angles (XYZ-convention) | |
void | getTransformation (float x, float y, float z, float roll, float pitch, float yaw, Eigen::Affine3f &t) |
void | getTransformation (double x, double y, double z, double roll, double pitch, double yaw, Eigen::Affine3d &t) |
Eigen::Affine3f | getTransformation (float x, float y, float z, float roll, float pitch, float yaw) |
Create a transformation from the given translation and Euler angles (XYZ-convention) | |
void | getTransformationFromTwoUnitVectors (const Eigen::Vector3f &y_direction, const Eigen::Vector3f &z_axis, Eigen::Affine3f &transformation) |
Get the unique 3D rotation that will rotate z_axis into (0,0,1) and y_direction into a vector with x=0 (or into (0,1,0) should y_direction be orthogonal to z_axis) | |
Eigen::Affine3f | getTransformationFromTwoUnitVectors (const Eigen::Vector3f &y_direction, const Eigen::Vector3f &z_axis) |
Get the unique 3D rotation that will rotate z_axis into (0,0,1) and y_direction into a vector with x=0 (or into (0,1,0) should y_direction be orthogonal to z_axis) | |
void | getTransformationFromTwoUnitVectorsAndOrigin (const Eigen::Vector3f &y_direction, const Eigen::Vector3f &z_axis, const Eigen::Vector3f &origin, Eigen::Affine3f &transformation) |
Get the transformation that will translate orign to (0,0,0) and rotate z_axis into (0,0,1) and y_direction into a vector with x=0 (or into (0,1,0) should y_direction be orthogonal to z_axis) | |
void | getTransFromUnitVectorsXY (const Eigen::Vector3f &x_axis, const Eigen::Vector3f &y_direction, Eigen::Affine3f &transformation) |
Get the unique 3D rotation that will rotate x_axis into (1,0,0) and y_direction into a vector with z=0 (or into (0,1,0) should y_direction be orthogonal to z_axis) | |
Eigen::Affine3f | getTransFromUnitVectorsXY (const Eigen::Vector3f &x_axis, const Eigen::Vector3f &y_direction) |
Get the unique 3D rotation that will rotate x_axis into (1,0,0) and y_direction into a vector with z=0 (or into (0,1,0) should y_direction be orthogonal to z_axis) | |
void | getTransFromUnitVectorsZY (const Eigen::Vector3f &z_axis, const Eigen::Vector3f &y_direction, Eigen::Affine3f &transformation) |
Get the unique 3D rotation that will rotate z_axis into (0,0,1) and y_direction into a vector with x=0 (or into (0,1,0) should y_direction be orthogonal to z_axis) | |
Eigen::Affine3f | getTransFromUnitVectorsZY (const Eigen::Vector3f &z_axis, const Eigen::Vector3f &y_direction) |
Get the unique 3D rotation that will rotate z_axis into (0,0,1) and y_direction into a vector with x=0 (or into (0,1,0) should y_direction be orthogonal to z_axis) | |
void | getTranslationAndEulerAngles (const Eigen::Affine3f &t, float &x, float &y, float &z, float &roll, float &pitch, float &yaw) |
template<typename FloatVectorT > | |
float | HIK_Norm (FloatVectorT A, FloatVectorT B, int dim) |
Compute the HIK norm of the vector between two points. | |
template<typename Matrix > | |
Matrix::Scalar | invert2x2 (const Matrix &matrix, Matrix &inverse) |
Calculate the inverse of a 2x2 matrix. | |
template<typename Matrix > | |
Matrix::Scalar | invert3x3Matrix (const Matrix &matrix, Matrix &inverse) |
Calculate the inverse of a general 3x3 matrix. | |
template<typename Matrix > | |
Matrix::Scalar | invert3x3SymMatrix (const Matrix &matrix, Matrix &inverse) |
Calculate the inverse of a 3x3 symmetric matrix. | |
bool | isBetterCorrespondence (const Correspondence &pc1, const Correspondence &pc2) |
Comparator to enable us to sort a vector of PointCorrespondences according to their scores using std::sort (begin(), end(), isBetterCorrespondence);. | |
template<typename PointT > | |
bool | isFinite (const PointT &pt) |
template<> | |
bool | isFinite< pcl::Axis > (const pcl::Axis &) |
template<> | |
bool | isFinite< pcl::BorderDescription > (const pcl::BorderDescription &p) |
template<> | |
bool | isFinite< pcl::Boundary > (const pcl::Boundary &) |
template<> | |
bool | isFinite< pcl::ESFSignature640 > (const pcl::ESFSignature640 &) |
template<> | |
bool | isFinite< pcl::FPFHSignature33 > (const pcl::FPFHSignature33 &) |
template<> | |
bool | isFinite< pcl::IntensityGradient > (const pcl::IntensityGradient &) |
template<> | |
bool | isFinite< pcl::Label > (const pcl::Label &) |
template<> | |
bool | isFinite< pcl::MomentInvariants > (const pcl::MomentInvariants &) |
template<> | |
bool | isFinite< pcl::Normal > (const pcl::Normal &n) |
template<> | |
bool | isFinite< pcl::NormalBasedSignature12 > (const pcl::NormalBasedSignature12 &) |
template<> | |
bool | isFinite< pcl::PFHRGBSignature250 > (const pcl::PFHRGBSignature250 &) |
template<> | |
bool | isFinite< pcl::PFHSignature125 > (const pcl::PFHSignature125 &) |
template<> | |
bool | isFinite< pcl::PointXY > (const pcl::PointXY &p) |
template<> | |
bool | isFinite< pcl::PPFRGBSignature > (const pcl::PPFRGBSignature &) |
template<> | |
bool | isFinite< pcl::PPFSignature > (const pcl::PPFSignature &) |
template<> | |
bool | isFinite< pcl::PrincipalCurvatures > (const pcl::PrincipalCurvatures &) |
template<> | |
bool | isFinite< pcl::PrincipalRadiiRSD > (const pcl::PrincipalRadiiRSD &) |
template<> | |
bool | isFinite< pcl::ReferenceFrame > (const pcl::ReferenceFrame &) |
template<> | |
bool | isFinite< pcl::RGB > (const pcl::RGB &) |
template<> | |
bool | isFinite< pcl::ShapeContext1980 > (const pcl::ShapeContext1980 &) |
template<> | |
bool | isFinite< pcl::SHOT1344 > (const pcl::SHOT1344 &) |
template<> | |
bool | isFinite< pcl::SHOT352 > (const pcl::SHOT352 &) |
template<> | |
bool | isFinite< pcl::VFHSignature308 > (const pcl::VFHSignature308 &) |
template<typename PointT > | |
bool | isPointIn2DPolygon (const PointT &point, const pcl::PointCloud< PointT > &polygon) |
General purpose method for checking if a 3D point is inside or outside a given 2D polygon. | |
template<typename Point1T , typename Point2T > | |
bool | isSamePointType () |
Check if two given point types are the same or not. | |
template<typename Type > | |
bool | isValueFinite (const pcl::PCLPointCloud2 &cloud, const unsigned int point_index, const int point_size, const unsigned int field_idx, const unsigned int fields_count) |
Check whether a given value of type Type (uchar, char, uint, int, float, double, ...) is finite or not. | |
bool | isVisible (const Eigen::Vector2f &X, const Eigen::Vector2f &S1, const Eigen::Vector2f &S2, const Eigen::Vector2f &R=Eigen::Vector2f::Zero()) |
Returns if a point X is visible from point R (or the origin) when taking into account the segment between the points S1 and S2. | |
template<typename PointT > | |
bool | isXYPointIn2DXYPolygon (const PointT &point, const pcl::PointCloud< PointT > &polygon) |
Check if a 2d point (X and Y coordinates considered only!) is inside or outside a given polygon. This method assumes that both the point and the polygon are projected onto the XY plane. | |
template<typename FloatVectorT > | |
float | JM_Norm (FloatVectorT A, FloatVectorT B, int dim) |
Compute the JM norm of the vector between two points. | |
template<typename FloatVectorT > | |
float | K_Norm (FloatVectorT A, FloatVectorT B, int dim, float P1, float P2) |
Compute the K norm of the vector between two points. | |
template<typename FloatVectorT > | |
float | KL_Norm (FloatVectorT A, FloatVectorT B, int dim) |
Compute the KL between two discrete probability density functions. | |
template<typename FloatVectorT > | |
float | L1_Norm (FloatVectorT A, FloatVectorT B, int dim) |
Compute the L1 norm of the vector between two points. | |
template<typename FloatVectorT > | |
float | L2_Norm (FloatVectorT A, FloatVectorT B, int dim) |
Compute the L2 norm of the vector between two points. | |
template<typename FloatVectorT > | |
float | L2_Norm_SQR (FloatVectorT A, FloatVectorT B, int dim) |
Compute the squared L2 norm of the vector between two points. | |
PCL_EXPORTS void | lineToLineSegment (const Eigen::VectorXf &line_a, const Eigen::VectorXf &line_b, Eigen::Vector4f &pt1_seg, Eigen::Vector4f &pt2_seg) |
Get the shortest 3D segment between two 3D lines. | |
PCL_EXPORTS bool | lineWithLineIntersection (const Eigen::VectorXf &line_a, const Eigen::VectorXf &line_b, Eigen::Vector4f &point, double sqr_eps=1e-4) |
Get the intersection of a two 3D lines in space as a 3D point. | |
PCL_EXPORTS bool | lineWithLineIntersection (const pcl::ModelCoefficients &line_a, const pcl::ModelCoefficients &line_b, Eigen::Vector4f &point, double sqr_eps=1e-4) |
Get the intersection of a two 3D lines in space as a 3D point. | |
template<typename FloatVectorT > | |
float | Linf_Norm (FloatVectorT A, FloatVectorT B, int dim) |
Compute the L-infinity norm of the vector between two points. | |
template<typename Derived > | |
void | loadBinary (Eigen::MatrixBase< Derived > const &matrix, std::istream &file) |
Read a matrix from an input stream. | |
PCL_EXPORTS unsigned int | lzfCompress (const void *const in_data, unsigned int in_len, void *out_data, unsigned int out_len) |
Compress in_len bytes stored at the memory block starting at in_data and write the result to out_data, up to a maximum length of out_len bytes using Marc Lehmann's LZF algorithm. | |
PCL_EXPORTS unsigned int | lzfDecompress (const void *const in_data, unsigned int in_len, void *out_data, unsigned int out_len) |
Decompress data compressed with the lzfCompress function and stored at location in_data and length in_len. The result will be stored at out_data up to a maximum of out_len characters. | |
float | normAngle (float alpha) |
Normalize an angle to (-PI, PI]. | |
std::ostream & | operator<< (std::ostream &s, const ::pcl::Vertices &v) |
std::ostream & | operator<< (std::ostream &s, const ::pcl::PointIndices &v) |
std::ostream & | operator<< (std::ostream &s, const ::pcl::ModelCoefficients &v) |
std::ostream & | operator<< (std::ostream &out, const PCLHeader &h) |
std::ostream & | operator<< (std::ostream &s, const ::pcl::PolygonMesh &v) |
std::ostream & | operator<< (std::ostream &s, const ::pcl::PCLImage &v) |
std::ostream & | operator<< (std::ostream &s, const ::pcl::PCLPointField &v) |
std::ostream & | operator<< (std::ostream &s, const ::pcl::PCLPointCloud2 &v) |
std::ostream & | operator<< (std::ostream &os, const RangeImageBorderExtractor::Parameters &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const Correspondence &c) |
overloaded << operator | |
std::ostream & | operator<< (std::ostream &os, const GradientXY &p) |
template<typename real > | |
std::ostream & | operator<< (std::ostream &os, const BivariatePolynomialT< real > &p) |
std::ostream & | operator<< (std::ostream &os, const _Axis &p) |
std::ostream & | operator<< (std::ostream &os, const NarfKeypoint::Parameters &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PointXYZ &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const RGB &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const Intensity &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const Intensity8u &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const Intensity32u &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PointXYZI &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PointXYZL &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const Label &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PointXYZRGBA &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PointXYZRGB &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PointXYZRGBL &p) |
template<typename PointT > | |
std::ostream & | operator<< (std::ostream &s, const pcl::PointCloud< PointT > &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PointXYZHSV &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PointXY &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PointUV &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const InterestPoint &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const Normal &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const Axis &p) |
std::ostream & | operator<< (std::ostream &os, const RangeImage &r) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PointNormal &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PointXYZRGBNormal &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PointXYZINormal &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PointWithRange &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PointWithViewpoint &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const MomentInvariants &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PrincipalRadiiRSD &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const Boundary &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PrincipalCurvatures &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PFHSignature125 &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PFHRGBSignature250 &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PPFSignature &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PPFRGBSignature &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const NormalBasedSignature12 &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const ShapeContext1980 &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const SHOT352 &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const SHOT1344 &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const ReferenceFrame &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const FPFHSignature33 &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const VFHSignature308 &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const ESFSignature640 &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const GFPFHSignature16 &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const Narf36 &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const BorderDescription &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const IntensityGradient &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PointWithScale &p) |
PCL_EXPORTS std::ostream & | operator<< (std::ostream &os, const PointSurfel &p) |
template<int N> | |
std::ostream & | operator<< (std::ostream &os, const Histogram< N > &p) |
PCL_DEPRECATED (template< typename PointT > void fromROSMsg(const pcl::PCLPointCloud2 &msg, pcl::PointCloud< PointT > &cloud, const MsgFieldMap &field_map),"pcl::fromROSMsg is deprecated, please use fromPCLPointCloud2 instead.") | |
Convert a PCLPointCloud2 binary data blob into a pcl::PointCloud<T> object using a field_map. | |
PCL_DEPRECATED (template< typename PointT > void fromROSMsg(const pcl::PCLPointCloud2 &msg, pcl::PointCloud< PointT > &cloud),"pcl::fromROSMsg is deprecated, please use fromPCLPointCloud2 instead.") | |
Convert a PCLPointCloud2 binary data blob into a pcl::PointCloud<T> object. | |
PCL_DEPRECATED (template< typename PointT > void toROSMsg(const pcl::PointCloud< PointT > &cloud, pcl::PCLPointCloud2 &msg),"pcl::fromROSMsg is deprecated, please use fromPCLPointCloud2 instead.") | |
Convert a pcl::PointCloud<T> object to a PCLPointCloud2 binary data blob. | |
PCL_DEPRECATED (template< typename CloudT > void toROSMsg(const CloudT &cloud, pcl::PCLImage &msg),"pcl::fromROSMsg is deprecated, please use fromPCLPointCloud2 instead.") | |
Copy the RGB fields of a PointCloud into pcl::PCLImage format. | |
PCL_DEPRECATED (inline void toROSMsg(const pcl::PCLPointCloud2 &cloud, pcl::PCLImage &msg),"pcl::fromROSMsg is deprecated, please use fromPCLPointCloud2 instead.") | |
Copy the RGB fields of a PCLPointCloud2 msg into pcl::PCLImage format. | |
template<typename FloatVectorT > | |
float | PF_Norm (FloatVectorT A, FloatVectorT B, int dim, float P1, float P2) |
Compute the PF norm of the vector between two points. | |
PCL_EXPORTS bool | planeWithPlaneIntersection (const Eigen::Vector4f &plane_a, const Eigen::Vector4f &fplane_b, Eigen::VectorXf &line, double angular_tolerance=0.1) |
Determine the line of intersection of two non-parallel planes using lagrange multipliers. | |
void | PointCloudDepthAndRGBtoXYZRGBA (PointCloud< Intensity > &depth, PointCloud< RGB > &image, float &focal, PointCloud< PointXYZRGBA > &out) |
Convert registered Depth image and RGB image to PointCloudXYZRGBA. | |
void | PointCloudRGBtoI (PointCloud< RGB > &in, PointCloud< Intensity > &out) |
Convert a RGB point cloud to a Intensity. | |
void | PointCloudRGBtoI (PointCloud< RGB > &in, PointCloud< Intensity8u > &out) |
Convert a RGB point cloud to a Intensity. | |
void | PointCloudRGBtoI (PointCloud< RGB > &in, PointCloud< Intensity32u > &out) |
Convert a RGB point cloud to a Intensity. | |
void | PointCloudXYZRGBAtoXYZHSV (PointCloud< PointXYZRGBA > &in, PointCloud< PointXYZHSV > &out) |
Convert a XYZRGB point cloud to a XYZHSV. | |
void | PointCloudXYZRGBtoXYZHSV (PointCloud< PointXYZRGB > &in, PointCloud< PointXYZHSV > &out) |
Convert a XYZRGB point cloud to a XYZHSV. | |
void | PointCloudXYZRGBtoXYZI (PointCloud< PointXYZRGB > &in, PointCloud< PointXYZI > &out) |
Convert a XYZRGB point cloud to a XYZI. | |
void | PointRGBtoI (RGB &in, Intensity &out) |
Convert a RGB point type to a I. | |
void | PointRGBtoI (RGB &in, Intensity8u &out) |
Convert a RGB point type to a I. | |
void | PointRGBtoI (RGB &in, Intensity32u &out) |
Convert a RGB point type to a I. | |
template<typename Point > | |
double | pointToPlaneDistance (const Point &p, double a, double b, double c, double d) |
Get the distance from a point to a plane (unsigned) defined by ax+by+cz+d=0. | |
template<typename Point > | |
double | pointToPlaneDistance (const Point &p, const Eigen::Vector4f &plane_coefficients) |
Get the distance from a point to a plane (unsigned) defined by ax+by+cz+d=0. | |
template<typename Point > | |
double | pointToPlaneDistanceSigned (const Point &p, double a, double b, double c, double d) |
Get the distance from a point to a plane (signed) defined by ax+by+cz+d=0. | |
template<typename Point > | |
double | pointToPlaneDistanceSigned (const Point &p, const Eigen::Vector4f &plane_coefficients) |
Get the distance from a point to a plane (signed) defined by ax+by+cz+d=0. | |
void | PointXYZHSVtoXYZRGB (PointXYZHSV &in, PointXYZRGB &out) |
void | PointXYZRGBAtoXYZHSV (PointXYZRGBA &in, PointXYZHSV &out) |
Convert a XYZRGB point type to a XYZHSV. | |
void | PointXYZRGBtoXYZHSV (PointXYZRGB &in, PointXYZHSV &out) |
Convert a XYZRGB point type to a XYZHSV. | |
void | PointXYZRGBtoXYZI (PointXYZRGB &in, PointXYZI &out) |
Convert a XYZRGB point type to a XYZI. | |
template<typename Point > | |
void | projectPoint (const Point &p, const Eigen::Vector4f &model_coefficients, Point &q) |
Project a point on a planar model given by a set of normalized coefficients. | |
float | rad2deg (float alpha) |
Convert an angle from radians to degrees. | |
double | rad2deg (double alpha) |
Convert an angle from radians to degrees. | |
template<class Type > | |
void | read (std::istream &stream, Type &value) |
Function for reading data from a stream. | |
template<class Type > | |
void | read (std::istream &stream, Type *value, int nr_values) |
Function for reading data arrays from a stream. | |
template<typename NormalT > | |
bool | refineNormal (const PointCloud< NormalT > &cloud, int index, const std::vector< int > &k_indices, const std::vector< float > &k_sqr_distances, NormalT &point) |
Refine an indexed point based on its neighbors, this function only writes to the normal_* fields. | |
template<typename PointT > | |
void | removeNaNFromPointCloud (const pcl::PointCloud< PointT > &cloud_in, std::vector< int > &index) |
Removes points with x, y, or z equal to NaN. | |
template<typename PointT > | |
void | removeNaNFromPointCloud (const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, std::vector< int > &index) |
Removes points with x, y, or z equal to NaN. | |
template<typename PointT > | |
void | removeNaNNormalsFromPointCloud (const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, std::vector< int > &index) |
Removes points that have their normals invalid (i.e., equal to NaN) | |
static const std::map < pcl::SacModel, unsigned int > | SAC_SAMPLE_SIZE (sample_size_pairs, sample_size_pairs+sizeof(sample_size_pairs)/sizeof(SampleSizeModel)) |
template<typename Derived > | |
void | saveBinary (const Eigen::MatrixBase< Derived > &matrix, std::ostream &file) |
Write a matrix to an output stream. | |
void | seededHueSegmentation (const PointCloud< PointXYZRGB > &cloud, const boost::shared_ptr< search::Search< PointXYZRGB > > &tree, float tolerance, PointIndices &indices_in, PointIndices &indices_out, float delta_hue=0.0) |
Decompose a region of space into clusters based on the Euclidean distance between points. | |
void | seededHueSegmentation (const PointCloud< PointXYZRGB > &cloud, const boost::shared_ptr< search::Search< PointXYZRGBL > > &tree, float tolerance, PointIndices &indices_in, PointIndices &indices_out, float delta_hue=0.0) |
Decompose a region of space into clusters based on the Euclidean distance between points. | |
template<typename FloatVectorT > | |
float | selectNorm (FloatVectorT A, FloatVectorT B, int dim, NormType norm_type) |
Method that calculates any norm type available, based on the norm_type variable. | |
template<typename PointT , typename ValT > | |
void | setFieldValue (PointT &pt, size_t field_offset, const ValT &value) |
Set the value at a specified field in a point. | |
void | solvePlaneParameters (const Eigen::Matrix3f &covariance_matrix, const Eigen::Vector4f &point, Eigen::Vector4f &plane_parameters, float &curvature) |
Solve the eigenvalues and eigenvectors of a given 3x3 covariance matrix, and estimate the least-squares plane normal and surface curvature. | |
void | solvePlaneParameters (const Eigen::Matrix3f &covariance_matrix, float &nx, float &ny, float &nz, float &curvature) |
Solve the eigenvalues and eigenvectors of a given 3x3 covariance matrix, and estimate the least-squares plane normal and surface curvature. | |
double | sqrPointToLineDistance (const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir) |
Get the square distance from a point to a line (represented by a point and a direction) | |
double | sqrPointToLineDistance (const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir, const double sqr_length) |
Get the square distance from a point to a line (represented by a point and a direction) | |
template<> | |
float | squaredEuclideanDistance (const pcl::segmentation::grabcut::Color &c1, const pcl::segmentation::grabcut::Color &c2) |
template<typename PointType1 , typename PointType2 > | |
float | squaredEuclideanDistance (const PointType1 &p1, const PointType2 &p2) |
Calculate the squared euclidean distance between the two given points. | |
template<> | |
float | squaredEuclideanDistance (const PointXY &p1, const PointXY &p2) |
Calculate the squared euclidean distance between the two given points. | |
template<typename FloatVectorT > | |
float | Sublinear_Norm (FloatVectorT A, FloatVectorT B, int dim) |
Compute the sublinear norm of the vector between two points. | |
template<typename PointT > | |
void | toPCLPointCloud2 (const pcl::PointCloud< PointT > &cloud, pcl::PCLPointCloud2 &msg) |
Convert a pcl::PointCloud<T> object to a PCLPointCloud2 binary data blob. | |
template<typename CloudT > | |
void | toPCLPointCloud2 (const CloudT &cloud, pcl::PCLImage &msg) |
Copy the RGB fields of a PointCloud into pcl::PCLImage format. | |
void | toPCLPointCloud2 (const pcl::PCLPointCloud2 &cloud, pcl::PCLImage &msg) |
Copy the RGB fields of a PCLPointCloud2 msg into pcl::PCLImage format. | |
template<typename PointT > | |
void | toROSMsg (const pcl::PointCloud< PointT > &cloud, pcl::PCLPointCloud2 &msg) |
template<typename CloudT > | |
void | toROSMsg (const CloudT &cloud, pcl::PCLImage &msg) |
void | toROSMsg (const pcl::PCLPointCloud2 &cloud, pcl::PCLImage &msg) |
template<typename PointT , typename Scalar > | |
PointT | transformPoint (const PointT &point, const Eigen::Transform< Scalar, 3, Eigen::Affine > &transform) |
Transform a point with members x,y,z. | |
template<typename PointT > | |
PointT | transformPoint (const PointT &point, const Eigen::Affine3f &transform) |
template<typename PointT , typename Scalar > | |
void | transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Transform< Scalar, 3, Eigen::Affine > &transform) |
Apply an affine transform defined by an Eigen Transform. | |
template<typename PointT > | |
void | transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Affine3f &transform) |
template<typename PointT , typename Scalar > | |
void | transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Transform< Scalar, 3, Eigen::Affine > &transform) |
Apply an affine transform defined by an Eigen Transform. | |
template<typename PointT > | |
void | transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Affine3f &transform) |
template<typename PointT , typename Scalar > | |
void | transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, const pcl::PointIndices &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Transform< Scalar, 3, Eigen::Affine > &transform) |
Apply an affine transform defined by an Eigen Transform. | |
template<typename PointT > | |
void | transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, const pcl::PointIndices &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Affine3f &transform) |
template<typename PointT , typename Scalar > | |
void | transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 4, 4 > &transform) |
Apply a rigid transform defined by a 4x4 matrix. | |
template<typename PointT > | |
void | transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix4f &transform) |
template<typename PointT , typename Scalar > | |
void | transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 4, 4 > &transform) |
Apply a rigid transform defined by a 4x4 matrix. | |
template<typename PointT > | |
void | transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix4f &transform) |
template<typename PointT , typename Scalar > | |
void | transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, const pcl::PointIndices &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 4, 4 > &transform) |
Apply a rigid transform defined by a 4x4 matrix. | |
template<typename PointT > | |
void | transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, const pcl::PointIndices &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix4f &transform) |
template<typename PointT , typename Scalar > | |
void | transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 3, 1 > &offset, const Eigen::Quaternion< Scalar > &rotation) |
Apply a rigid transform defined by a 3D offset and a quaternion. | |
template<typename PointT > | |
void | transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Vector3f &offset, const Eigen::Quaternionf &rotation) |
template<typename PointT , typename Scalar > | |
void | transformPointCloudWithNormals (const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Transform< Scalar, 3, Eigen::Affine > &transform) |
Transform a point cloud and rotate its normals using an Eigen transform. | |
template<typename PointT > | |
void | transformPointCloudWithNormals (const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Affine3f &transform) |
template<typename PointT , typename Scalar > | |
void | transformPointCloudWithNormals (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Transform< Scalar, 3, Eigen::Affine > &transform) |
Transform a point cloud and rotate its normals using an Eigen transform. | |
template<typename PointT > | |
void | transformPointCloudWithNormals (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Affine3f &transform) |
template<typename PointT , typename Scalar > | |
void | transformPointCloudWithNormals (const pcl::PointCloud< PointT > &cloud_in, const pcl::PointIndices &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Transform< Scalar, 3, Eigen::Affine > &transform) |
Transform a point cloud and rotate its normals using an Eigen transform. | |
template<typename PointT > | |
void | transformPointCloudWithNormals (const pcl::PointCloud< PointT > &cloud_in, const pcl::PointIndices &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Affine3f &transform) |
template<typename PointT , typename Scalar > | |
void | transformPointCloudWithNormals (const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 4, 4 > &transform) |
Transform a point cloud and rotate its normals using an Eigen transform. | |
template<typename PointT > | |
void | transformPointCloudWithNormals (const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix4f &transform) |
template<typename PointT , typename Scalar > | |
void | transformPointCloudWithNormals (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 4, 4 > &transform) |
Transform a point cloud and rotate its normals using an Eigen transform. | |
template<typename PointT > | |
void | transformPointCloudWithNormals (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix4f &transform) |
template<typename PointT , typename Scalar > | |
void | transformPointCloudWithNormals (const pcl::PointCloud< PointT > &cloud_in, const pcl::PointIndices &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 4, 4 > &transform) |
Transform a point cloud and rotate its normals using an Eigen transform. | |
template<typename PointT > | |
void | transformPointCloudWithNormals (const pcl::PointCloud< PointT > &cloud_in, const pcl::PointIndices &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix4f &transform) |
template<typename PointT , typename Scalar > | |
void | transformPointCloudWithNormals (const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 3, 1 > &offset, const Eigen::Quaternion< Scalar > &rotation) |
Transform a point cloud and rotate its normals using an Eigen transform. | |
template<typename PointT > | |
void | transformPointCloudWithNormals (const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Vector3f &offset, const Eigen::Quaternionf &rotation) |
template<typename Derived , typename OtherDerived > | |
Eigen::internal::umeyama_transform_matrix_type < Derived, OtherDerived > ::type | umeyama (const Eigen::MatrixBase< Derived > &src, const Eigen::MatrixBase< OtherDerived > &dst, bool with_scaling=false) |
Returns the transformation between two point sets. The algorithm is based on: "Least-squares estimation of transformation parameters between two point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573. | |
template<class Type > | |
void | write (std::ostream &stream, Type value) |
Function for writing data to a stream. | |
template<class Type > | |
void | write (std::ostream &stream, Type *value, int nr_values) |
Function for writing data arrays to a stream. | |
Variables | |
const unsigned int | edgeTable [256] |
struct pcl::_PointXYZHSV | EIGEN_ALIGN16 |
const int | I_SHIFT_EDGE [3][2] |
const int | I_SHIFT_EP [12][2] |
The 12 edges of a cell. | |
const int | I_SHIFT_PT [4] |
static const int | SAC_LMEDS = 1 |
static const int | SAC_MLESAC = 5 |
static const int | SAC_MSAC = 2 |
static const int | SAC_PROSAC = 6 |
static const int | SAC_RANSAC = 0 |
static const int | SAC_RMSAC = 4 |
static const int | SAC_RRANSAC = 3 |
const int | triTable [256][16] |
Software License Agreement (BSD License)
Copyright (c) 2011, Willow Garage, Inc. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Willow Garage, Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
$Id$
typedef Eigen::Map<Eigen::Array3f> pcl::Array3fMap |
Definition at line 212 of file point_types.hpp.
typedef const Eigen::Map<const Eigen::Array3f> pcl::Array3fMapConst |
Definition at line 213 of file point_types.hpp.
typedef Eigen::Map<Eigen::Array4f, Eigen::Aligned> pcl::Array4fMap |
Definition at line 214 of file point_types.hpp.
typedef const Eigen::Map<const Eigen::Array4f, Eigen::Aligned> pcl::Array4fMapConst |
Definition at line 215 of file point_types.hpp.
typedef BivariatePolynomialT<float> pcl::BivariatePolynomial |
Definition at line 137 of file bivariate_polynomial.h.
typedef BivariatePolynomialT<double> pcl::BivariatePolynomiald |
Definition at line 136 of file bivariate_polynomial.h.
typedef pcl::PointCloud<pcl::PointXYZRGB> pcl::cc |
Definition at line 95 of file visualization/src/cloud_viewer.cpp.
typedef pcl::PointCloud<pcl::PointXYZRGBA> pcl::cca |
Definition at line 94 of file visualization/src/cloud_viewer.cpp.
typedef std::vector< pcl::Correspondence, Eigen::aligned_allocator<pcl::Correspondence> > pcl::Correspondences |
Definition at line 92 of file correspondence.h.
typedef boost::shared_ptr<const Correspondences > pcl::CorrespondencesConstPtr |
Definition at line 94 of file correspondence.h.
typedef boost::shared_ptr<Correspondences> pcl::CorrespondencesPtr |
Definition at line 93 of file correspondence.h.
typedef pcl::PointCloud<pcl::PointXYZI> pcl::gc |
Definition at line 96 of file visualization/src/cloud_viewer.cpp.
typedef boost::shared_ptr<PCLHeader const> pcl::HeaderConstPtr |
Definition at line 31 of file PCLHeader.h.
typedef boost::shared_ptr<PCLHeader> pcl::HeaderPtr |
Definition at line 30 of file PCLHeader.h.
typedef std::vector<pcl::PointIndices> pcl::IndicesClusters |
Definition at line 46 of file conditional_euclidean_clustering.h.
typedef boost::shared_ptr<std::vector<pcl::PointIndices> > pcl::IndicesClustersPtr |
Definition at line 47 of file conditional_euclidean_clustering.h.
typedef boost::shared_ptr<const std::vector<int> > pcl::IndicesConstPtr |
Definition at line 61 of file pcl_base.h.
typedef boost::shared_ptr<std::vector<int> > pcl::IndicesPtr |
Definition at line 60 of file pcl_base.h.
typedef pcl::PointCloud<pcl::PointXYZ> pcl::mc |
Definition at line 97 of file visualization/src/cloud_viewer.cpp.
typedef boost::shared_ptr< ::pcl::ModelCoefficients const> pcl::ModelCoefficientsConstPtr |
Definition at line 28 of file ModelCoefficients.h.
typedef boost::shared_ptr< ::pcl::ModelCoefficients> pcl::ModelCoefficientsPtr |
Definition at line 27 of file ModelCoefficients.h.
typedef std::vector<detail::FieldMapping> pcl::MsgFieldMap |
Definition at line 65 of file point_cloud.h.
typedef boost::shared_ptr< ::pcl::PCLImage const> pcl::PCLImageConstPtr |
Definition at line 38 of file PCLImage.h.
typedef boost::shared_ptr< ::pcl::PCLImage> pcl::PCLImagePtr |
Definition at line 37 of file PCLImage.h.
typedef boost::shared_ptr< ::pcl::PCLPointCloud2 const> pcl::PCLPointCloud2ConstPtr |
Definition at line 56 of file PCLPointCloud2.h.
typedef boost::shared_ptr< ::pcl::PCLPointCloud2> pcl::PCLPointCloud2Ptr |
Definition at line 55 of file PCLPointCloud2.h.
typedef boost::shared_ptr< ::pcl::PCLPointField const> pcl::PCLPointFieldConstPtr |
Definition at line 42 of file PCLPointField.h.
typedef boost::shared_ptr< ::pcl::PCLPointField> pcl::PCLPointFieldPtr |
Definition at line 41 of file PCLPointField.h.
typedef std::vector<PointCorrespondence3D, Eigen::aligned_allocator<PointCorrespondence3D> > pcl::PointCorrespondences3DVector |
Definition at line 133 of file correspondence.h.
typedef std::vector<PointCorrespondence6D, Eigen::aligned_allocator<PointCorrespondence6D> > pcl::PointCorrespondences6DVector |
Definition at line 149 of file correspondence.h.
typedef boost::shared_ptr< ::pcl::PointIndices const> pcl::PointIndicesConstPtr |
Definition at line 27 of file PointIndices.h.
typedef boost::shared_ptr< ::pcl::PointIndices> pcl::PointIndicesPtr |
Definition at line 26 of file PointIndices.h.
typedef boost::shared_ptr< ::pcl::PolygonMesh const> pcl::PolygonMeshConstPtr |
Definition at line 33 of file PolygonMesh.h.
typedef boost::shared_ptr< ::pcl::PolygonMesh> pcl::PolygonMeshPtr |
Definition at line 32 of file PolygonMesh.h.
typedef PolynomialCalculationsT<float> pcl::PolynomialCalculations |
Definition at line 129 of file polynomial_calculations.h.
typedef PolynomialCalculationsT<double> pcl::PolynomialCalculationsd |
Definition at line 128 of file polynomial_calculations.h.
typedef boost::shared_ptr<pcl::TextureMesh const> pcl::TextureMeshConstPtr |
Definition at line 110 of file TextureMesh.h.
typedef boost::shared_ptr<pcl::TextureMesh> pcl::TextureMeshPtr |
Definition at line 109 of file TextureMesh.h.
typedef Eigen::Map<Eigen::Vector3f> pcl::Vector3fMap |
Definition at line 216 of file point_types.hpp.
typedef const Eigen::Map<const Eigen::Vector3f> pcl::Vector3fMapConst |
Definition at line 217 of file point_types.hpp.
typedef Eigen::Map<Eigen::Vector4f, Eigen::Aligned> pcl::Vector4fMap |
Definition at line 218 of file point_types.hpp.
typedef const Eigen::Map<const Eigen::Vector4f, Eigen::Aligned> pcl::Vector4fMapConst |
Definition at line 219 of file point_types.hpp.
typedef VectorAverage<float, 2> pcl::VectorAverage2f |
Definition at line 111 of file vector_average.h.
typedef VectorAverage<float, 3> pcl::VectorAverage3f |
Definition at line 112 of file vector_average.h.
typedef VectorAverage<float, 4> pcl::VectorAverage4f |
Definition at line 113 of file vector_average.h.
typedef boost::shared_ptr<Vertices const> pcl::VerticesConstPtr |
Definition at line 27 of file Vertices.h.
typedef boost::shared_ptr<Vertices> pcl::VerticesPtr |
Definition at line 26 of file Vertices.h.
enum pcl::SacModel |
Definition at line 48 of file model_types.h.
void pcl::approximatePolygon | ( | const PlanarPolygon< PointT > & | polygon, |
PlanarPolygon< PointT > & | approx_polygon, | ||
float | threshold, | ||
bool | refine = false , |
||
bool | closed = true |
||
) |
see approximatePolygon2D
Definition at line 43 of file polygon_operations.hpp.
void pcl::approximatePolygon2D | ( | const typename PointCloud< PointT >::VectorType & | polygon, |
typename PointCloud< PointT >::VectorType & | approx_polygon, | ||
float | threshold, | ||
bool | refine = false , |
||
bool | closed = true |
||
) |
returns an approximate polygon to given 2D contour. Uses just X and Y values.
[in] | polygon | input polygon |
[out] | approx_polygon | approximate polygon |
[in] | threshold | maximum allowed distance of an input vertex to an output edge |
[in] | closed | whether it is a closed polygon or a polyline |
Definition at line 71 of file polygon_operations.hpp.
std::vector<float> pcl::assignNormalWeights | ( | const PointCloud< NormalT > & | , |
int | , | ||
const std::vector< int > & | k_indices, | ||
const std::vector< float > & | k_sqr_distances | ||
) | [inline] |
Assign weights of nearby normals used for refinement.
cloud | the point cloud data |
index | a valid index in cloud representing a valid (i.e., finite) query point |
k_indices | indices of neighboring points |
k_sqr_distances | squared distances to the neighboring points |
Definition at line 55 of file normal_refinement.h.
bool pcl::compareLabeledPointClusters | ( | const pcl::PointIndices & | a, |
const pcl::PointIndices & | b | ||
) | [inline] |
Sort clusters method (for std::sort).
Definition at line 183 of file extract_labeled_clusters.h.
bool pcl::comparePair | ( | std::pair< float, int > | i, |
std::pair< float, int > | j | ||
) | [inline] |
This function is used as a comparator for sorting.
Definition at line 342 of file region_growing.h.
bool pcl::comparePointClusters | ( | const pcl::PointIndices & | a, |
const pcl::PointIndices & | b | ||
) | [inline] |
Sort clusters method (for std::sort).
Definition at line 418 of file extract_clusters.h.
unsigned int pcl::compute3DCentroid | ( | ConstCloudIterator< PointT > & | cloud_iterator, |
Eigen::Vector4f & | centroid | ||
) | [inline] |
Definition at line 68 of file centroid.h.
unsigned int pcl::compute3DCentroid | ( | ConstCloudIterator< PointT > & | cloud_iterator, |
Eigen::Vector4d & | centroid | ||
) | [inline] |
Definition at line 75 of file centroid.h.
unsigned int pcl::compute3DCentroid | ( | const pcl::PointCloud< PointT > & | cloud, |
Eigen::Vector4f & | centroid | ||
) | [inline] |
Definition at line 93 of file centroid.h.
unsigned int pcl::compute3DCentroid | ( | const pcl::PointCloud< PointT > & | cloud, |
Eigen::Vector4d & | centroid | ||
) | [inline] |
Definition at line 100 of file centroid.h.
unsigned int pcl::compute3DCentroid | ( | const pcl::PointCloud< PointT > & | cloud, |
const std::vector< int > & | indices, | ||
Eigen::Vector4f & | centroid | ||
) | [inline] |
Definition at line 121 of file centroid.h.
unsigned int pcl::compute3DCentroid | ( | const pcl::PointCloud< PointT > & | cloud, |
const std::vector< int > & | indices, | ||
Eigen::Vector4d & | centroid | ||
) | [inline] |
Definition at line 129 of file centroid.h.
unsigned int pcl::compute3DCentroid | ( | const pcl::PointCloud< PointT > & | cloud, |
const pcl::PointIndices & | indices, | ||
Eigen::Vector4f & | centroid | ||
) | [inline] |
Definition at line 151 of file centroid.h.
unsigned int pcl::compute3DCentroid | ( | const pcl::PointCloud< PointT > & | cloud, |
const pcl::PointIndices & | indices, | ||
Eigen::Vector4d & | centroid | ||
) | [inline] |
Definition at line 159 of file centroid.h.
unsigned int pcl::computeCovarianceMatrix | ( | const pcl::PointCloud< PointT > & | cloud, |
const Eigen::Vector4f & | centroid, | ||
Eigen::Matrix3f & | covariance_matrix | ||
) | [inline] |
Definition at line 185 of file centroid.h.
unsigned int pcl::computeCovarianceMatrix | ( | const pcl::PointCloud< PointT > & | cloud, |
const Eigen::Vector4d & | centroid, | ||
Eigen::Matrix3d & | covariance_matrix | ||
) | [inline] |
Definition at line 193 of file centroid.h.
unsigned int pcl::computeCovarianceMatrix | ( | const pcl::PointCloud< PointT > & | cloud, |
const std::vector< int > & | indices, | ||
const Eigen::Vector4f & | centroid, | ||
Eigen::Matrix3f & | covariance_matrix | ||
) | [inline] |
Definition at line 254 of file centroid.h.
unsigned int pcl::computeCovarianceMatrix | ( | const pcl::PointCloud< PointT > & | cloud, |
const std::vector< int > & | indices, | ||
const Eigen::Vector4d & | centroid, | ||
Eigen::Matrix3d & | covariance_matrix | ||
) | [inline] |
Definition at line 263 of file centroid.h.
unsigned int pcl::computeCovarianceMatrix | ( | const pcl::PointCloud< PointT > & | cloud, |
const pcl::PointIndices & | indices, | ||
const Eigen::Vector4f & | centroid, | ||
Eigen::Matrix3f & | covariance_matrix | ||
) | [inline] |
Definition at line 291 of file centroid.h.
unsigned int pcl::computeCovarianceMatrix | ( | const pcl::PointCloud< PointT > & | cloud, |
const pcl::PointIndices & | indices, | ||
const Eigen::Vector4d & | centroid, | ||
Eigen::Matrix3d & | covariance_matrix | ||
) | [inline] |
Definition at line 300 of file centroid.h.
unsigned int pcl::computeCovarianceMatrix | ( | const pcl::PointCloud< PointT > & | cloud, |
Eigen::Matrix3f & | covariance_matrix | ||
) | [inline] |
Definition at line 508 of file centroid.h.
unsigned int pcl::computeCovarianceMatrix | ( | const pcl::PointCloud< PointT > & | cloud, |
Eigen::Matrix3d & | covariance_matrix | ||
) | [inline] |
Definition at line 515 of file centroid.h.
unsigned int pcl::computeCovarianceMatrix | ( | const pcl::PointCloud< PointT > & | cloud, |
const std::vector< int > & | indices, | ||
Eigen::Matrix3f & | covariance_matrix | ||
) | [inline] |
Definition at line 539 of file centroid.h.
unsigned int pcl::computeCovarianceMatrix | ( | const pcl::PointCloud< PointT > & | cloud, |
const std::vector< int > & | indices, | ||
Eigen::Matrix3d & | covariance_matrix | ||
) | [inline] |
Definition at line 547 of file centroid.h.
unsigned int pcl::computeCovarianceMatrix | ( | const pcl::PointCloud< PointT > & | cloud, |
const pcl::PointIndices & | indices, | ||
Eigen::Matrix3f & | covariance_matrix | ||
) | [inline] |
Definition at line 572 of file centroid.h.
unsigned int pcl::computeCovarianceMatrix | ( | const pcl::PointCloud< PointT > & | cloud, |
const pcl::PointIndices & | indices, | ||
Eigen::Matrix3d & | covariance_matrix | ||
) | [inline] |
Definition at line 580 of file centroid.h.
unsigned int pcl::computeCovarianceMatrixNormalized | ( | const pcl::PointCloud< PointT > & | cloud, |
const Eigen::Vector4f & | centroid, | ||
Eigen::Matrix3f & | covariance_matrix | ||
) | [inline] |
Definition at line 219 of file centroid.h.
unsigned int pcl::computeCovarianceMatrixNormalized | ( | const pcl::PointCloud< PointT > & | cloud, |
const Eigen::Vector4d & | centroid, | ||
Eigen::Matrix3d & | covariance_matrix | ||
) | [inline] |
Definition at line 227 of file centroid.h.
unsigned int pcl::computeCovarianceMatrixNormalized | ( | const pcl::PointCloud< PointT > & | cloud, |
const std::vector< int > & | indices, | ||
const Eigen::Vector4f & | centroid, | ||
Eigen::Matrix3f & | covariance_matrix | ||
) | [inline] |
Definition at line 330 of file centroid.h.
unsigned int pcl::computeCovarianceMatrixNormalized | ( | const pcl::PointCloud< PointT > & | cloud, |
const std::vector< int > & | indices, | ||
const Eigen::Vector4d & | centroid, | ||
Eigen::Matrix3d & | covariance_matrix | ||
) | [inline] |
Definition at line 339 of file centroid.h.
unsigned int pcl::computeCovarianceMatrixNormalized | ( | const pcl::PointCloud< PointT > & | cloud, |
const pcl::PointIndices & | indices, | ||
const Eigen::Vector4f & | centroid, | ||
Eigen::Matrix3f & | covariance_matrix | ||
) | [inline] |
Definition at line 368 of file centroid.h.
unsigned int pcl::computeCovarianceMatrixNormalized | ( | const pcl::PointCloud< PointT > & | cloud, |
const pcl::PointIndices & | indices, | ||
const Eigen::Vector4d & | centroid, | ||
Eigen::Matrix3d & | covariance_matrix | ||
) | [inline] |
Definition at line 377 of file centroid.h.
unsigned int pcl::computeMeanAndCovarianceMatrix | ( | const pcl::PointCloud< PointT > & | cloud, |
Eigen::Matrix3f & | covariance_matrix, | ||
Eigen::Vector4f & | centroid | ||
) | [inline] |
Definition at line 403 of file centroid.h.
unsigned int pcl::computeMeanAndCovarianceMatrix | ( | const pcl::PointCloud< PointT > & | cloud, |
Eigen::Matrix3d & | covariance_matrix, | ||
Eigen::Vector4d & | centroid | ||
) | [inline] |
Definition at line 411 of file centroid.h.
unsigned int pcl::computeMeanAndCovarianceMatrix | ( | const pcl::PointCloud< PointT > & | cloud, |
const std::vector< int > & | indices, | ||
Eigen::Matrix3f & | covariance_matrix, | ||
Eigen::Vector4f & | centroid | ||
) | [inline] |
Definition at line 438 of file centroid.h.
unsigned int pcl::computeMeanAndCovarianceMatrix | ( | const pcl::PointCloud< PointT > & | cloud, |
const std::vector< int > & | indices, | ||
Eigen::Matrix3d & | covariance_matrix, | ||
Eigen::Vector4d & | centroid | ||
) | [inline] |
Definition at line 447 of file centroid.h.
unsigned int pcl::computeMeanAndCovarianceMatrix | ( | const pcl::PointCloud< PointT > & | cloud, |
const pcl::PointIndices & | indices, | ||
Eigen::Matrix3f & | covariance_matrix, | ||
Eigen::Vector4f & | centroid | ||
) | [inline] |
Definition at line 475 of file centroid.h.
unsigned int pcl::computeMeanAndCovarianceMatrix | ( | const pcl::PointCloud< PointT > & | cloud, |
const pcl::PointIndices & | indices, | ||
Eigen::Matrix3d & | covariance_matrix, | ||
Eigen::Vector4d & | centroid | ||
) | [inline] |
Definition at line 484 of file centroid.h.
void pcl::computeNDCentroid | ( | const pcl::PointCloud< PointT > & | cloud, |
Eigen::VectorXf & | centroid | ||
) | [inline] |
Definition at line 879 of file centroid.h.
void pcl::computeNDCentroid | ( | const pcl::PointCloud< PointT > & | cloud, |
Eigen::VectorXd & | centroid | ||
) | [inline] |
Definition at line 886 of file centroid.h.
void pcl::computeNDCentroid | ( | const pcl::PointCloud< PointT > & | cloud, |
const std::vector< int > & | indices, | ||
Eigen::VectorXf & | centroid | ||
) | [inline] |
Definition at line 905 of file centroid.h.
void pcl::computeNDCentroid | ( | const pcl::PointCloud< PointT > & | cloud, |
const std::vector< int > & | indices, | ||
Eigen::VectorXd & | centroid | ||
) | [inline] |
Definition at line 913 of file centroid.h.
void pcl::computeNDCentroid | ( | const pcl::PointCloud< PointT > & | cloud, |
const pcl::PointIndices & | indices, | ||
Eigen::VectorXf & | centroid | ||
) | [inline] |
Definition at line 933 of file centroid.h.
void pcl::computeNDCentroid | ( | const pcl::PointCloud< PointT > & | cloud, |
const pcl::PointIndices & | indices, | ||
Eigen::VectorXd & | centroid | ||
) | [inline] |
Definition at line 941 of file centroid.h.
bool pcl::computePairFeatures | ( | const Eigen::Vector4f & | p1, |
const Eigen::Vector4f & | n1, | ||
const Eigen::Vector4f & | p2, | ||
const Eigen::Vector4f & | n2, | ||
float & | f1, | ||
float & | f2, | ||
float & | f3, | ||
float & | f4 | ||
) |
Compute the 4-tuple representation containing the three angles and one distance between two points represented by Cartesian coordinates and normals.
[in] | p1 | the first XYZ point |
[in] | n1 | the first surface normal |
[in] | p2 | the second XYZ point |
[in] | n2 | the second surface normal |
[out] | f1 | the first angular feature (angle between the projection of nq_idx and u) |
[out] | f2 | the second angular feature (angle between nq_idx and v) |
[out] | f3 | the third angular feature (angle between np_idx and |p_idx - q_idx|) |
[out] | f4 | the distance feature (p_idx - q_idx) |
void pcl::computePointNormal | ( | const pcl::PointCloud< PointT > & | cloud, |
Eigen::Vector4f & | plane_parameters, | ||
float & | curvature | ||
) | [inline] |
Compute the Least-Squares plane fit for a given set of points, and return the estimated plane parameters together with the surface curvature.
cloud | the input point cloud |
plane_parameters | the plane parameters as: a, b, c, d (ax + by + cz + d = 0) |
curvature | the estimated surface curvature as a measure of
|
Definition at line 60 of file normal_3d.h.
void pcl::computePointNormal | ( | const pcl::PointCloud< PointT > & | cloud, |
const std::vector< int > & | indices, | ||
Eigen::Vector4f & | plane_parameters, | ||
float & | curvature | ||
) | [inline] |
Compute the Least-Squares plane fit for a given set of points, using their indices, and return the estimated plane parameters together with the surface curvature.
cloud | the input point cloud |
indices | the point cloud indices that need to be used |
plane_parameters | the plane parameters as: a, b, c, d (ax + by + cz + d = 0) |
curvature | the estimated surface curvature as a measure of
|
Definition at line 92 of file normal_3d.h.
bool pcl::computePPFPairFeature | ( | const Eigen::Vector4f & | p1, |
const Eigen::Vector4f & | n1, | ||
const Eigen::Vector4f & | p2, | ||
const Eigen::Vector4f & | n2, | ||
float & | f1, | ||
float & | f2, | ||
float & | f3, | ||
float & | f4 | ||
) |
bool pcl::computeRGBPairFeatures | ( | const Eigen::Vector4f & | p1, |
const Eigen::Vector4f & | n1, | ||
const Eigen::Vector4i & | colors1, | ||
const Eigen::Vector4f & | p2, | ||
const Eigen::Vector4f & | n2, | ||
const Eigen::Vector4i & | colors2, | ||
float & | f1, | ||
float & | f2, | ||
float & | f3, | ||
float & | f4, | ||
float & | f5, | ||
float & | f6, | ||
float & | f7 | ||
) |
void pcl::computeRoots | ( | const Matrix & | m, |
Roots & | roots | ||
) | [inline] |
computes the roots of the characteristic polynomial of the input matrix m, which are the eigenvalues
[in] | m | input matrix |
[out] | roots | roots of the characteristic polynomial of the input matrix m, which are the eigenvalues |
Definition at line 92 of file common/include/pcl/common/eigen.h.
void pcl::computeRoots2 | ( | const Scalar & | b, |
const Scalar & | c, | ||
Roots & | roots | ||
) | [inline] |
Compute the roots of a quadratic polynom x^2 + b*x + c = 0.
[in] | b | linear parameter |
[in] | c | constant parameter |
[out] | roots | solutions of x^2 + b*x + c = 0 |
Definition at line 74 of file common/include/pcl/common/eigen.h.
Eigen::MatrixXf pcl::computeRSD | ( | boost::shared_ptr< const pcl::PointCloud< PointInT > > & | surface, |
boost::shared_ptr< const pcl::PointCloud< PointNT > > & | normals, | ||
const std::vector< int > & | indices, | ||
double | max_dist, | ||
int | nr_subdiv, | ||
double | plane_radius, | ||
PointOutT & | radii, | ||
bool | compute_histogram = false |
||
) |
Estimate the Radius-based Surface Descriptor (RSD) for a given point based on its spatial neighborhood of 3D points with normals.
[in] | surface | the dataset containing the XYZ points |
[in] | normals | the dataset containing the surface normals at each point in the dataset |
[in] | indices | the neighborhood point indices in the dataset (first point is used as the reference) |
[in] | max_dist | the upper bound for the considered distance interval |
[in] | nr_subdiv | the number of subdivisions for the considered distance interval |
[in] | plane_radius | maximum radius, above which everything can be considered planar |
[in] | radii | the output point of a type that should have r_min and r_max fields |
[in] | compute_histogram | if not false, the full neighborhood histogram is provided, usable as a point signature |
Eigen::MatrixXf pcl::computeRSD | ( | boost::shared_ptr< const pcl::PointCloud< PointNT > > & | normals, |
const std::vector< int > & | indices, | ||
const std::vector< float > & | sqr_dists, | ||
double | max_dist, | ||
int | nr_subdiv, | ||
double | plane_radius, | ||
PointOutT & | radii, | ||
bool | compute_histogram = false |
||
) |
Estimate the Radius-based Surface Descriptor (RSD) for a given point based on its spatial neighborhood of 3D points with normals.
[in] | normals | the dataset containing the surface normals at each point in the dataset |
[in] | indices | the neighborhood point indices in the dataset (first point is used as the reference) |
[in] | sqr_dists | the squared distances from the first to all points in the neighborhood |
[in] | max_dist | the upper bound for the considered distance interval |
[in] | nr_subdiv | the number of subdivisions for the considered distance interval |
[in] | plane_radius | maximum radius, above which everything can be considered planar |
[in] | radii | the output point of a type that should have r_min and r_max fields |
[in] | compute_histogram | if not false, the full neighborhood histogram is provided, usable as a point signature |
pcl::PointCloud<pcl::VFHSignature308>::Ptr pcl::computeVFH | ( | typename PointCloud< PointT >::ConstPtr | cloud, |
double | radius | ||
) |
Helper function to extract the VFH feature describing the given point cloud.
points | point cloud for feature extraction |
radius | search radius for normal estimation |
Definition at line 57 of file vfh_nn_classifier.h.
void pcl::copyStringValue | ( | const std::string & | st, |
pcl::PCLPointCloud2 & | cloud, | ||
unsigned int | point_index, | ||
unsigned int | field_idx, | ||
unsigned int | fields_count | ||
) | [inline] |
Copy one single value of type T (uchar, char, uint, int, float, double, ...) from a string.
Uses aoti/atof to do the conversion. Checks if the st is "nan" and converts it accordingly.
[in] | st | the string containing the value to convert and copy |
[out] | cloud | the cloud to copy it to |
[in] | point_index | the index of the point |
[in] | field_idx | the index of the dimension/field |
[in] | fields_count | the current fields count |
Definition at line 317 of file io/include/pcl/io/file_io.h.
void pcl::copyStringValue< int8_t > | ( | const std::string & | st, |
pcl::PCLPointCloud2 & | cloud, | ||
unsigned int | point_index, | ||
unsigned int | field_idx, | ||
unsigned int | fields_count | ||
) | [inline] |
Definition at line 340 of file io/include/pcl/io/file_io.h.
void pcl::copyStringValue< uint8_t > | ( | const std::string & | st, |
pcl::PCLPointCloud2 & | cloud, | ||
unsigned int | point_index, | ||
unsigned int | field_idx, | ||
unsigned int | fields_count | ||
) | [inline] |
Definition at line 366 of file io/include/pcl/io/file_io.h.
void pcl::copyValueString | ( | const pcl::PCLPointCloud2 & | cloud, |
const unsigned int | point_index, | ||
const int | point_size, | ||
const unsigned int | field_idx, | ||
const unsigned int | fields_count, | ||
std::ostream & | stream | ||
) | [inline] |
insers a value of type Type (uchar, char, uint, int, float, double, ...) into a stringstream.
If the value is NaN, it inserst "nan".
[in] | cloud | the cloud to copy from |
[in] | point_index | the index of the point |
[in] | point_size | the size of the point in the cloud |
[in] | field_idx | the index of the dimension/field |
[in] | fields_count | the current fields count |
[out] | stream | the ostringstream to copy into |
Definition at line 234 of file io/include/pcl/io/file_io.h.
void pcl::copyValueString< int8_t > | ( | const pcl::PCLPointCloud2 & | cloud, |
const unsigned int | point_index, | ||
const int | point_size, | ||
const unsigned int | field_idx, | ||
const unsigned int | fields_count, | ||
std::ostream & | stream | ||
) | [inline] |
Definition at line 249 of file io/include/pcl/io/file_io.h.
void pcl::copyValueString< uint8_t > | ( | const pcl::PCLPointCloud2 & | cloud, |
const unsigned int | point_index, | ||
const int | point_size, | ||
const unsigned int | field_idx, | ||
const unsigned int | fields_count, | ||
std::ostream & | stream | ||
) | [inline] |
Definition at line 265 of file io/include/pcl/io/file_io.h.
void pcl::createMapping | ( | const std::vector< pcl::PCLPointField > & | msg_fields, |
MsgFieldMap & | field_map | ||
) |
Definition at line 123 of file conversions.h.
void pcl::demeanPointCloud | ( | ConstCloudIterator< PointT > & | cloud_iterator, |
const Eigen::Vector4f & | centroid, | ||
pcl::PointCloud< PointT > & | cloud_out, | ||
int | npts = 0 |
||
) |
Definition at line 601 of file centroid.h.
void pcl::demeanPointCloud | ( | ConstCloudIterator< PointT > & | cloud_iterator, |
const Eigen::Vector4d & | centroid, | ||
pcl::PointCloud< PointT > & | cloud_out, | ||
int | npts = 0 |
||
) |
Definition at line 610 of file centroid.h.
void pcl::demeanPointCloud | ( | ConstCloudIterator< PointT > & | cloud_iterator, |
const Eigen::Vector4f & | centroid, | ||
pcl::PointCloud< PointT > & | cloud_out | ||
) |
Definition at line 630 of file centroid.h.
void pcl::demeanPointCloud | ( | ConstCloudIterator< PointT > & | cloud_iterator, |
const Eigen::Vector4d & | centroid, | ||
pcl::PointCloud< PointT > & | cloud_out | ||
) |
Definition at line 638 of file centroid.h.
void pcl::demeanPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const std::vector< int > & | indices, | ||
const Eigen::Vector4f & | centroid, | ||
pcl::PointCloud< PointT > & | cloud_out | ||
) |
Definition at line 659 of file centroid.h.
void pcl::demeanPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const std::vector< int > & | indices, | ||
const Eigen::Vector4d & | centroid, | ||
pcl::PointCloud< PointT > & | cloud_out | ||
) |
Definition at line 668 of file centroid.h.
void pcl::demeanPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const pcl::PointIndices & | indices, | ||
const Eigen::Vector4f & | centroid, | ||
pcl::PointCloud< PointT > & | cloud_out | ||
) |
Definition at line 690 of file centroid.h.
void pcl::demeanPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const pcl::PointIndices & | indices, | ||
const Eigen::Vector4d & | centroid, | ||
pcl::PointCloud< PointT > & | cloud_out | ||
) |
Definition at line 699 of file centroid.h.
void pcl::demeanPointCloud | ( | ConstCloudIterator< PointT > & | cloud_iterator, |
const Eigen::Vector4f & | centroid, | ||
Eigen::MatrixXf & | cloud_out, | ||
int | npts = 0 |
||
) |
Definition at line 723 of file centroid.h.
void pcl::demeanPointCloud | ( | ConstCloudIterator< PointT > & | cloud_iterator, |
const Eigen::Vector4d & | centroid, | ||
Eigen::MatrixXd & | cloud_out, | ||
int | npts = 0 |
||
) |
Definition at line 732 of file centroid.h.
void pcl::demeanPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const Eigen::Vector4f & | centroid, | ||
Eigen::MatrixXf & | cloud_out | ||
) |
Definition at line 754 of file centroid.h.
void pcl::demeanPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const Eigen::Vector4d & | centroid, | ||
Eigen::MatrixXd & | cloud_out | ||
) |
Definition at line 762 of file centroid.h.
void pcl::demeanPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const std::vector< int > & | indices, | ||
const Eigen::Vector4f & | centroid, | ||
Eigen::MatrixXf & | cloud_out | ||
) |
Definition at line 785 of file centroid.h.
void pcl::demeanPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const std::vector< int > & | indices, | ||
const Eigen::Vector4d & | centroid, | ||
Eigen::MatrixXd & | cloud_out | ||
) |
Definition at line 794 of file centroid.h.
void pcl::demeanPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const pcl::PointIndices & | indices, | ||
const Eigen::Vector4f & | centroid, | ||
Eigen::MatrixXf & | cloud_out | ||
) |
Definition at line 818 of file centroid.h.
void pcl::demeanPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const pcl::PointIndices & | indices, | ||
const Eigen::Vector4d & | centroid, | ||
Eigen::MatrixXd & | cloud_out | ||
) |
Definition at line 827 of file centroid.h.
Matrix::Scalar pcl::determinant3x3Matrix | ( | const Matrix & | matrix | ) | [inline] |
Definition at line 650 of file common/include/pcl/common/eigen.h.
double pcl::estimateProjectionMatrix | ( | typename pcl::PointCloud< PointT >::ConstPtr | cloud, |
Eigen::Matrix< float, 3, 4, Eigen::RowMajor > & | projection_matrix, | ||
const std::vector< int > & | indices = std::vector<int> () |
||
) |
Estimates the projection matrix P = K * (R|-R*t) from organized point clouds, with K = [[fx, s, cx], [0, fy, cy], [0, 0, 1]] R = rotation matrix and t = translation vector.
[in] | cloud | input cloud. Must be organized and from a projective device. e.g. stereo or kinect, ... |
[out] | projection_matrix | output projection matrix |
[in] | indices | The indices to be used to determine the projection matrix |
Definition at line 78 of file projection_matrix.hpp.
float pcl::euclideanDistance | ( | const PointType1 & | p1, |
const PointType2 & | p2 | ||
) | [inline] |
Calculate the euclidean distance between the two given points.
[in] | p1 | the first point |
[in] | p2 | the second point |
Definition at line 196 of file common/include/pcl/common/distances.h.
void pcl::extractEuclideanClusters | ( | const PointCloud< PointT > & | cloud, |
const boost::shared_ptr< search::Search< PointT > > & | tree, | ||
float | tolerance, | ||
std::vector< PointIndices > & | clusters, | ||
unsigned int | min_pts_per_cluster = 1 , |
||
unsigned int | max_pts_per_cluster = (std::numeric_limits<int>::max) () |
||
) |
Decompose a region of space into clusters based on the Euclidean distance between points.
cloud | the point cloud message |
tree | the spatial locator (e.g., kd-tree) used for nearest neighbors searching |
tolerance | the spatial cluster tolerance as a measure in L2 Euclidean space |
clusters | the resultant clusters containing point indices (as a vector of PointIndices) |
min_pts_per_cluster | minimum number of points that a cluster may contain (default: 1) |
max_pts_per_cluster | maximum number of points that a cluster may contain (default: max int) |
Definition at line 45 of file extract_clusters.hpp.
void pcl::extractEuclideanClusters | ( | const PointCloud< PointT > & | cloud, |
const std::vector< int > & | indices, | ||
const boost::shared_ptr< search::Search< PointT > > & | tree, | ||
float | tolerance, | ||
std::vector< PointIndices > & | clusters, | ||
unsigned int | min_pts_per_cluster = 1 , |
||
unsigned int | max_pts_per_cluster = (std::numeric_limits<int>::max) () |
||
) |
Decompose a region of space into clusters based on the Euclidean distance between points.
cloud | the point cloud message |
indices | a list of point indices to use from cloud |
tree | the spatial locator (e.g., kd-tree) used for nearest neighbors searching |
tolerance | the spatial cluster tolerance as a measure in L2 Euclidean space |
clusters | the resultant clusters containing point indices (as a vector of PointIndices) |
min_pts_per_cluster | minimum number of points that a cluster may contain (default: 1) |
max_pts_per_cluster | maximum number of points that a cluster may contain (default: max int) |
Definition at line 118 of file extract_clusters.hpp.
void pcl::extractEuclideanClusters | ( | const PointCloud< PointT > & | cloud, |
const PointCloud< Normal > & | normals, | ||
float | tolerance, | ||
const boost::shared_ptr< KdTree< PointT > > & | tree, | ||
std::vector< PointIndices > & | clusters, | ||
double | eps_angle, | ||
unsigned int | min_pts_per_cluster = 1 , |
||
unsigned int | max_pts_per_cluster = (std::numeric_limits<int>::max) () |
||
) |
Decompose a region of space into clusters based on the euclidean distance between points, and the normal angular deviation.
cloud | the point cloud message |
normals | the point cloud message containing normal information |
tree | the spatial locator (e.g., kd-tree) used for nearest neighbors searching |
tolerance | the spatial cluster tolerance as a measure in the L2 Euclidean space |
clusters | the resultant clusters containing point indices (as a vector of PointIndices) |
eps_angle | the maximum allowed difference between normals in radians for cluster/region growing |
min_pts_per_cluster | minimum number of points that a cluster may contain (default: 1) |
max_pts_per_cluster | maximum number of points that a cluster may contain (default: max int) |
Definition at line 99 of file extract_clusters.h.
void pcl::extractEuclideanClusters | ( | const PointCloud< PointT > & | cloud, |
const PointCloud< Normal > & | normals, | ||
const std::vector< int > & | indices, | ||
const boost::shared_ptr< KdTree< PointT > > & | tree, | ||
float | tolerance, | ||
std::vector< PointIndices > & | clusters, | ||
double | eps_angle, | ||
unsigned int | min_pts_per_cluster = 1 , |
||
unsigned int | max_pts_per_cluster = (std::numeric_limits<int>::max) () |
||
) |
Decompose a region of space into clusters based on the euclidean distance between points, and the normal angular deviation.
cloud | the point cloud message |
normals | the point cloud message containing normal information |
indices | a list of point indices to use from cloud |
tree | the spatial locator (e.g., kd-tree) used for nearest neighbors searching |
tolerance | the spatial cluster tolerance as a measure in the L2 Euclidean space |
clusters | the resultant clusters containing point indices (as PointIndices) |
eps_angle | the maximum allowed difference between normals in degrees for cluster/region growing |
min_pts_per_cluster | minimum number of points that a cluster may contain (default: 1) |
max_pts_per_cluster | maximum number of points that a cluster may contain (default: max int) |
Definition at line 198 of file extract_clusters.h.
void pcl::extractLabeledEuclideanClusters | ( | const PointCloud< PointT > & | cloud, |
const boost::shared_ptr< search::Search< PointT > > & | tree, | ||
float | tolerance, | ||
std::vector< std::vector< PointIndices > > & | labeled_clusters, | ||
unsigned int | min_pts_per_cluster = 1 , |
||
unsigned int | max_pts_per_cluster = std::numeric_limits<unsigned int>::max () , |
||
unsigned int | max_label = std::numeric_limits<unsigned int>::max () |
||
) |
Decompose a region of space into clusters based on the Euclidean distance between points.
[in] | cloud | the point cloud message |
[in] | tree | the spatial locator (e.g., kd-tree) used for nearest neighbors searching |
[in] | tolerance | the spatial cluster tolerance as a measure in L2 Euclidean space |
[out] | labeled_clusters | the resultant clusters containing point indices (as a vector of PointIndices) |
[in] | min_pts_per_cluster | minimum number of points that a cluster may contain (default: 1) |
[in] | max_pts_per_cluster | maximum number of points that a cluster may contain (default: max int) |
[in] | max_label |
Definition at line 44 of file extract_labeled_clusters.hpp.
void pcl::flipNormalTowardsViewpoint | ( | const PointT & | point, |
float | vp_x, | ||
float | vp_y, | ||
float | vp_z, | ||
Eigen::Matrix< Scalar, 4, 1 > & | normal | ||
) | [inline] |
Flip (in place) the estimated normal of a point towards a given viewpoint.
point | a given point |
vp_x | the X coordinate of the viewpoint |
vp_y | the X coordinate of the viewpoint |
vp_z | the X coordinate of the viewpoint |
normal | the plane normal to be flipped |
Definition at line 119 of file normal_3d.h.
void pcl::flipNormalTowardsViewpoint | ( | const PointT & | point, |
float | vp_x, | ||
float | vp_y, | ||
float | vp_z, | ||
Eigen::Matrix< Scalar, 3, 1 > & | normal | ||
) | [inline] |
Flip (in place) the estimated normal of a point towards a given viewpoint.
point | a given point |
vp_x | the X coordinate of the viewpoint |
vp_y | the X coordinate of the viewpoint |
vp_z | the X coordinate of the viewpoint |
normal | the plane normal to be flipped |
Definition at line 146 of file normal_3d.h.
void pcl::flipNormalTowardsViewpoint | ( | const PointT & | point, |
float | vp_x, | ||
float | vp_y, | ||
float | vp_z, | ||
float & | nx, | ||
float & | ny, | ||
float & | nz | ||
) | [inline] |
Flip (in place) the estimated normal of a point towards a given viewpoint.
point | a given point |
vp_x | the X coordinate of the viewpoint |
vp_y | the X coordinate of the viewpoint |
vp_z | the X coordinate of the viewpoint |
nx | the resultant X component of the plane normal |
ny | the resultant Y component of the plane normal |
nz | the resultant Z component of the plane normal |
Definition at line 167 of file normal_3d.h.
void pcl::for_each_type | ( | F | f | ) | [inline] |
Definition at line 91 of file for_each_type.h.
void pcl::fromPCLPointCloud2 | ( | const pcl::PCLPointCloud2 & | msg, |
pcl::PointCloud< PointT > & | cloud, | ||
const MsgFieldMap & | field_map | ||
) |
Convert a PCLPointCloud2 binary data blob into a pcl::PointCloud<T> object using a field_map.
[in] | msg | the PCLPointCloud2 binary blob |
[out] | cloud | the resultant pcl::PointCloud<T> |
[in] | field_map | a MsgFieldMap object |
MsgFieldMap field_map; createMapping<PointT> (msg.fields, field_map);
Definition at line 167 of file conversions.h.
void pcl::fromPCLPointCloud2 | ( | const pcl::PCLPointCloud2 & | msg, |
pcl::PointCloud< PointT > & | cloud | ||
) |
Convert a PCLPointCloud2 binary data blob into a pcl::PointCloud<T> object.
[in] | msg | the PCLPointCloud2 binary blob |
[out] | cloud | the resultant pcl::PointCloud<T> |
Definition at line 225 of file conversions.h.
void pcl::fromROSMsg | ( | const pcl::PCLPointCloud2 & | msg, |
pcl::PointCloud< PointT > & | cloud, | ||
const MsgFieldMap & | field_map | ||
) |
Definition at line 71 of file ros/conversions.h.
void pcl::fromROSMsg | ( | const pcl::PCLPointCloud2 & | msg, |
pcl::PointCloud< PointT > & | cloud | ||
) |
Definition at line 85 of file ros/conversions.h.
Eigen::MatrixXi pcl::getAllNeighborCellIndices | ( | ) | [inline] |
Get the relative cell indices of all the 26 neighbors.
Definition at line 122 of file voxel_grid.h.
void pcl::getAllPcdFilesInDirectory | ( | const std::string & | directory, |
std::vector< std::string > & | file_names | ||
) | [inline] |
Find all *.pcd files in the directory and return them sorted.
directory | the directory to be searched |
file_names | the resulting (sorted) list of .pcd files |
Definition at line 46 of file file_io.hpp.
void pcl::getApproximateIndices | ( | const typename pcl::PointCloud< PointT >::Ptr & | cloud_in, |
const typename pcl::PointCloud< PointT >::Ptr & | cloud_ref, | ||
std::vector< int > & | indices | ||
) |
Get a set of approximate indices for a given point cloud into a reference point cloud. The coordinates of the two point clouds can differ. The method uses an internal KdTree for finding the closest neighbors from cloud_in in cloud_ref.
[in] | cloud_in | the input point cloud dataset |
[in] | cloud_ref | the reference point cloud dataset |
[out] | indices | the resultant set of nearest neighbor indices of cloud_in in cloud_ref |
Definition at line 68 of file kdtree/include/pcl/kdtree/impl/io.hpp.
void pcl::getApproximateIndices | ( | const typename pcl::PointCloud< Point1T >::Ptr & | cloud_in, |
const typename pcl::PointCloud< Point2T >::Ptr & | cloud_ref, | ||
std::vector< int > & | indices | ||
) |
Get a set of approximate indices for a given point cloud into a reference point cloud. The coordinates of the two point clouds can differ. The method uses an internal KdTree for finding the closest neighbors from cloud_in in cloud_ref.
[in] | cloud_in | the input point cloud dataset |
[in] | cloud_ref | the reference point cloud dataset |
[out] | indices | the resultant set of nearest neighbor indices of cloud_in in cloud_ref |
Definition at line 48 of file kdtree/include/pcl/kdtree/impl/io.hpp.
void pcl::getCameraMatrixFromProjectionMatrix | ( | const Eigen::Matrix< float, 3, 4, Eigen::RowMajor > & | projection_matrix, |
Eigen::Matrix3f & | camera_matrix | ||
) |
Determines the camera matrix from the given projection matrix.
[in] | projection_matrix | |
[out] | camera_matrix |
Definition at line 42 of file projection_matrix.cpp.
void pcl::getFeaturePointCloud | ( | const std::vector< Eigen::MatrixXf, Eigen::aligned_allocator< Eigen::MatrixXf > > & | histograms2D, |
PointCloud< Histogram< N > > & | histogramsPC | ||
) |
Transform a list of 2D matrices into a point cloud containing the values in a vector (Histogram<N>). Can be used to transform the 2D histograms obtained in RSDEstimation into a point cloud.
[in] | histograms2D | the list of neighborhood 2D histograms |
[out] | histogramsPC | the dataset containing the linearized matrices |
PCL_EXPORTS void pcl::getFieldsSizes | ( | const std::vector< pcl::PCLPointField > & | fields, |
std::vector< int > & | field_sizes | ||
) |
Obtain a vector with the sizes of all valid fields (e.g., not "_")
[in] | fields | the input vector containing the fields |
[out] | field_sizes | the resultant field sizes in bytes |
void pcl::getFieldValue | ( | const PointT & | pt, |
size_t | field_offset, | ||
ValT & | value | ||
) | [inline] |
Get the value at a specified field in a point.
[in] | pt | the point to get the value from |
[in] | field_offset | the offset of the field |
[out] | value | the value to retreive |
Definition at line 297 of file point_traits.h.
std::string pcl::getFileExtension | ( | const std::string & | input | ) | [inline] |
Get the file extension from the given string (the remaining string after the last '.')
input | the input filename |
Definition at line 81 of file file_io.hpp.
std::string pcl::getFilenameWithoutExtension | ( | const std::string & | input | ) | [inline] |
Remove the extension from the given string and return only the filename (everything before the last '.')
input | the input filename (with the file extension) |
Definition at line 75 of file file_io.hpp.
std::string pcl::getFilenameWithoutPath | ( | const std::string & | input | ) | [inline] |
Remove the path from the given string and return only the filename (the remaining string after the last '/')
input | the input filename (with full path) |
Definition at line 69 of file file_io.hpp.
Eigen::MatrixXi pcl::getHalfNeighborCellIndices | ( | ) | [inline] |
Get the relative cell indices of the "upper half" 13 neighbors.
Definition at line 85 of file voxel_grid.h.
void pcl::getMinMax3D | ( | const pcl::PCLPointCloud2ConstPtr & | cloud, |
int | x_idx, | ||
int | y_idx, | ||
int | z_idx, | ||
Eigen::Vector4f & | min_pt, | ||
Eigen::Vector4f & | max_pt | ||
) |
Obtain the maximum and minimum points in 3D from a given point cloud.
[in] | cloud | the pointer to a pcl::PCLPointCloud2 dataset |
[in] | x_idx | the index of the X channel |
[in] | y_idx | the index of the Y channel |
[in] | z_idx | the index of the Z channel |
[out] | min_pt | the minimum data point |
[out] | max_pt | the maximum data point |
Definition at line 49 of file filters/src/voxel_grid.cpp.
void pcl::getMinMax3D | ( | const pcl::PCLPointCloud2ConstPtr & | cloud, |
int | x_idx, | ||
int | y_idx, | ||
int | z_idx, | ||
const std::string & | distance_field_name, | ||
float | min_distance, | ||
float | max_distance, | ||
Eigen::Vector4f & | min_pt, | ||
Eigen::Vector4f & | max_pt, | ||
bool | limit_negative = false |
||
) |
Obtain the maximum and minimum points in 3D from a given point cloud.
[in] | cloud | the pointer to a pcl::PCLPointCloud2 dataset |
[in] | x_idx | the index of the X channel |
[in] | y_idx | the index of the Y channel |
[in] | z_idx | the index of the Z channel |
[in] | distance_field_name | the name of the dimension to filter data along to |
[in] | min_distance | the minimum acceptable value in distance_field_name data |
[in] | max_distance | the maximum acceptable value in distance_field_name data |
[out] | min_pt | the minimum data point |
[out] | max_pt | the maximum data point |
[in] | limit_negative | false if data inside of the [min_distance; max_distance] interval should be considered, true otherwise. |
Definition at line 94 of file filters/src/voxel_grid.cpp.
void pcl::getMinMax3D | ( | const typename pcl::PointCloud< PointT >::ConstPtr & | cloud, |
const std::string & | distance_field_name, | ||
float | min_distance, | ||
float | max_distance, | ||
Eigen::Vector4f & | min_pt, | ||
Eigen::Vector4f & | max_pt, | ||
bool | limit_negative = false |
||
) |
Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud, without considering points outside of a distance threshold from the laser origin.
[in] | cloud | the point cloud data message |
[in] | distance_field_name | the field name that contains the distance values |
[in] | min_distance | the minimum distance a point will be considered from |
[in] | max_distance | the maximum distance a point will be considered to |
[out] | min_pt | the resultant minimum bounds |
[out] | max_pt | the resultant maximum bounds |
[in] | limit_negative | if set to true, then all points outside of the interval (min_distance;max_distace) are considered |
Definition at line 47 of file voxel_grid.hpp.
void pcl::getMinMax3D | ( | const typename pcl::PointCloud< PointT >::ConstPtr & | cloud, |
const std::vector< int > & | indices, | ||
const std::string & | distance_field_name, | ||
float | min_distance, | ||
float | max_distance, | ||
Eigen::Vector4f & | min_pt, | ||
Eigen::Vector4f & | max_pt, | ||
bool | limit_negative = false |
||
) |
Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud, without considering points outside of a distance threshold from the laser origin.
[in] | cloud | the point cloud data message |
[in] | indices | the vector of indices to use |
[in] | distance_field_name | the field name that contains the distance values |
[in] | min_distance | the minimum distance a point will be considered from |
[in] | max_distance | the maximum distance a point will be considered to |
[out] | min_pt | the resultant minimum bounds |
[out] | max_pt | the resultant maximum bounds |
[in] | limit_negative | if set to true, then all points outside of the interval (min_distance;max_distace) are considered |
Definition at line 125 of file voxel_grid.hpp.
void pcl::getPointCloudDifference | ( | const pcl::PointCloud< PointT > & | src, |
const pcl::PointCloud< PointT > & | tgt, | ||
double | threshold, | ||
const boost::shared_ptr< pcl::search::Search< PointT > > & | tree, | ||
pcl::PointCloud< PointT > & | output | ||
) |
Obtain the difference between two aligned point clouds as another point cloud, given a distance threshold.
src | the input point cloud source |
tgt | the input point cloud target we need to obtain the difference against |
threshold | the distance threshold (tolerance) for point correspondences. (e.g., check if f a point p1 from src has a correspondence > threshold than a point p2 from tgt) |
tree | the spatial locator (e.g., kd-tree) used for nearest neighbors searching built over tgt |
output | the resultant output point cloud difference |
Definition at line 46 of file segment_differences.hpp.
double pcl::getPrincipalTransformation | ( | const pcl::PointCloud< PointT > & | cloud, |
Eigen::Transform< Scalar, 3, Eigen::Affine > & | transform | ||
) | [inline] |
Calculates the principal (PCA-based) alignment of the point cloud.
[in] | cloud | the input point cloud |
[out] | transform | the resultant transform |
Definition at line 309 of file transforms.hpp.
double pcl::getPrincipalTransformation | ( | const pcl::PointCloud< PointT > & | cloud, |
Eigen::Affine3f & | transform | ||
) | [inline] |
Definition at line 411 of file common/include/pcl/common/transforms.h.
void pcl::getRejectedQueryIndices | ( | const pcl::Correspondences & | correspondences_before, |
const pcl::Correspondences & | correspondences_after, | ||
std::vector< int > & | indices, | ||
bool | presorting_required = true |
||
) |
Get the query points of correspondences that are present in one correspondence vector but not in the other, e.g., to compare correspondences before and after rejection.
[in] | correspondences_before | Vector of correspondences before rejection |
[in] | correspondences_after | Vector of correspondences after rejection |
[out] | indices | Query point indices of correspondences that have been rejected |
[in] | presorting_required | Enable/disable internal sorting of vectors. By default (true), vectors are internally sorted before determining their difference. If the order of correspondences in correspondences_after is not different (has not been changed) from the order in correspondences_before this pre-processing step can be disabled in order to gain efficiency. In order to disable pre-sorting set presorting_requered to false. |
Definition at line 45 of file correspondence.cpp.
double pcl::getTime | ( | ) | [inline] |
Definition at line 146 of file common/time.h.
void pcl::getTransformation | ( | float | x, |
float | y, | ||
float | z, | ||
float | roll, | ||
float | pitch, | ||
float | yaw, | ||
Eigen::Affine3f & | t | ||
) | [inline] |
Definition at line 781 of file common/include/pcl/common/eigen.h.
void pcl::getTransformation | ( | double | x, |
double | y, | ||
double | z, | ||
double | roll, | ||
double | pitch, | ||
double | yaw, | ||
Eigen::Affine3d & | t | ||
) | [inline] |
Definition at line 788 of file common/include/pcl/common/eigen.h.
bool pcl::isFinite | ( | const PointT & | pt | ) | [inline] |
Tests if the 3D components of a point are all finite param[in] pt point to be tested
Definition at line 53 of file point_tests.h.
bool pcl::isFinite< pcl::Axis > | ( | const pcl::Axis & | ) | [inline] |
Definition at line 68 of file point_tests.h.
bool pcl::isFinite< pcl::BorderDescription > | ( | const pcl::BorderDescription & | p | ) | [inline] |
Definition at line 96 of file point_tests.h.
bool pcl::isFinite< pcl::Boundary > | ( | const pcl::Boundary & | ) | [inline] |
Definition at line 71 of file point_tests.h.
bool pcl::isFinite< pcl::ESFSignature640 > | ( | const pcl::ESFSignature640 & | ) | [inline] |
Definition at line 84 of file point_tests.h.
bool pcl::isFinite< pcl::FPFHSignature33 > | ( | const pcl::FPFHSignature33 & | ) | [inline] |
Definition at line 82 of file point_tests.h.
bool pcl::isFinite< pcl::IntensityGradient > | ( | const pcl::IntensityGradient & | ) | [inline] |
Definition at line 85 of file point_tests.h.
bool pcl::isFinite< pcl::Label > | ( | const pcl::Label & | ) | [inline] |
Definition at line 67 of file point_tests.h.
bool pcl::isFinite< pcl::MomentInvariants > | ( | const pcl::MomentInvariants & | ) | [inline] |
Definition at line 69 of file point_tests.h.
bool pcl::isFinite< pcl::Normal > | ( | const pcl::Normal & | n | ) | [inline] |
Definition at line 103 of file point_tests.h.
bool pcl::isFinite< pcl::NormalBasedSignature12 > | ( | const pcl::NormalBasedSignature12 & | ) | [inline] |
Definition at line 81 of file point_tests.h.
bool pcl::isFinite< pcl::PFHRGBSignature250 > | ( | const pcl::PFHRGBSignature250 & | ) | [inline] |
Definition at line 78 of file point_tests.h.
bool pcl::isFinite< pcl::PFHSignature125 > | ( | const pcl::PFHSignature125 & | ) | [inline] |
Definition at line 77 of file point_tests.h.
bool pcl::isFinite< pcl::PointXY > | ( | const pcl::PointXY & | p | ) | [inline] |
Definition at line 89 of file point_tests.h.
bool pcl::isFinite< pcl::PPFRGBSignature > | ( | const pcl::PPFRGBSignature & | ) | [inline] |
Definition at line 80 of file point_tests.h.
bool pcl::isFinite< pcl::PPFSignature > | ( | const pcl::PPFSignature & | ) | [inline] |
Definition at line 79 of file point_tests.h.
bool pcl::isFinite< pcl::PrincipalCurvatures > | ( | const pcl::PrincipalCurvatures & | ) | [inline] |
Definition at line 72 of file point_tests.h.
bool pcl::isFinite< pcl::PrincipalRadiiRSD > | ( | const pcl::PrincipalRadiiRSD & | ) | [inline] |
Definition at line 70 of file point_tests.h.
bool pcl::isFinite< pcl::ReferenceFrame > | ( | const pcl::ReferenceFrame & | ) | [inline] |
Definition at line 75 of file point_tests.h.
bool pcl::isFinite< pcl::RGB > | ( | const pcl::RGB & | ) | [inline] |
Definition at line 66 of file point_tests.h.
bool pcl::isFinite< pcl::ShapeContext1980 > | ( | const pcl::ShapeContext1980 & | ) | [inline] |
Definition at line 76 of file point_tests.h.
bool pcl::isFinite< pcl::SHOT1344 > | ( | const pcl::SHOT1344 & | ) | [inline] |
Definition at line 74 of file point_tests.h.
bool pcl::isFinite< pcl::SHOT352 > | ( | const pcl::SHOT352 & | ) | [inline] |
Definition at line 73 of file point_tests.h.
bool pcl::isFinite< pcl::VFHSignature308 > | ( | const pcl::VFHSignature308 & | ) | [inline] |
Definition at line 83 of file point_tests.h.
bool pcl::isPointIn2DPolygon | ( | const PointT & | point, |
const pcl::PointCloud< PointT > & | polygon | ||
) |
General purpose method for checking if a 3D point is inside or outside a given 2D polygon.
point | a 3D point projected onto the same plane as the polygon |
polygon | a polygon |
Definition at line 47 of file extract_polygonal_prism_data.hpp.
bool pcl::isSamePointType | ( | ) | [inline] |
Check if two given point types are the same or not.
Definition at line 273 of file common/include/pcl/common/io.h.
bool pcl::isValueFinite | ( | const pcl::PCLPointCloud2 & | cloud, |
const unsigned int | point_index, | ||
const int | point_size, | ||
const unsigned int | field_idx, | ||
const unsigned int | fields_count | ||
) | [inline] |
Check whether a given value of type Type (uchar, char, uint, int, float, double, ...) is finite or not.
[in] | cloud | the cloud that contains the data |
[in] | point_index | the index of the point |
[in] | point_size | the size of the point in the cloud |
[in] | field_idx | the index of the dimension/field |
[in] | fields_count | the current fields count |
Definition at line 292 of file io/include/pcl/io/file_io.h.
bool pcl::isVisible | ( | const Eigen::Vector2f & | X, |
const Eigen::Vector2f & | S1, | ||
const Eigen::Vector2f & | S2, | ||
const Eigen::Vector2f & | R = Eigen::Vector2f::Zero () |
||
) | [inline] |
Returns if a point X is visible from point R (or the origin) when taking into account the segment between the points S1 and S2.
X | 2D coordinate of the point |
S1 | 2D coordinate of the segment's first point |
S2 | 2D coordinate of the segment's secont point |
R | 2D coorddinate of the reference point (defaults to 0,0) |
bool pcl::isXYPointIn2DXYPolygon | ( | const PointT & | point, |
const pcl::PointCloud< PointT > & | polygon | ||
) |
Check if a 2d point (X and Y coordinates considered only!) is inside or outside a given polygon. This method assumes that both the point and the polygon are projected onto the XY plane.
point | a 3D point projected onto the same plane as the polygon |
polygon | a polygon |
Definition at line 107 of file extract_polygonal_prism_data.hpp.
unsigned int pcl::lzfCompress | ( | const void *const | in_data, |
unsigned int | in_len, | ||
void * | out_data, | ||
unsigned int | out_len | ||
) |
Compress in_len bytes stored at the memory block starting at in_data and write the result to out_data, up to a maximum length of out_len bytes using Marc Lehmann's LZF algorithm.
If the output buffer is not large enough or any error occurs return 0, otherwise return the number of bytes used, which might be considerably more than in_len (but less than 104% of the original size), so it makes sense to always use out_len == in_len - 1), to ensure _some_ compression, and store the data uncompressed otherwise (with a flag, of course.
[in] | in_data | the input uncompressed buffer |
[in] | in_len | the length of the input buffer |
[out] | out_data | the output buffer where the compressed result will be stored |
[out] | out_len | the length of the output buffer |
unsigned int pcl::lzfDecompress | ( | const void *const | in_data, |
unsigned int | in_len, | ||
void * | out_data, | ||
unsigned int | out_len | ||
) |
Decompress data compressed with the lzfCompress function and stored at location in_data and length in_len. The result will be stored at out_data up to a maximum of out_len characters.
If the output buffer is not large enough to hold the decompressed data, a 0 is returned and errno is set to E2BIG. Otherwise the number of decompressed bytes (i.e. the original length of the data) is returned.
If an error in the compressed data is detected, a zero is returned and errno is set to EINVAL.
This function is very fast, about as fast as a copying loop.
[in] | in_data | the input compressed buffer |
[in] | in_len | the length of the input buffer |
[out] | out_data | the output buffer (must be resized to out_len) |
[out] | out_len | the length of the output buffer |
std::ostream& pcl::operator<< | ( | std::ostream & | s, |
const ::pcl::Vertices & | v | ||
) | [inline] |
Definition at line 29 of file Vertices.h.
std::ostream& pcl::operator<< | ( | std::ostream & | s, |
const ::pcl::PointIndices & | v | ||
) | [inline] |
Definition at line 29 of file PointIndices.h.
std::ostream& pcl::operator<< | ( | std::ostream & | s, |
const ::pcl::ModelCoefficients & | v | ||
) | [inline] |
Definition at line 30 of file ModelCoefficients.h.
std::ostream& pcl::operator<< | ( | std::ostream & | out, |
const PCLHeader & | h | ||
) | [inline] |
Definition at line 33 of file PCLHeader.h.
std::ostream& pcl::operator<< | ( | std::ostream & | s, |
const ::pcl::PolygonMesh & | v | ||
) | [inline] |
Definition at line 35 of file PolygonMesh.h.
std::ostream& pcl::operator<< | ( | std::ostream & | s, |
const ::pcl::PCLImage & | v | ||
) | [inline] |
Definition at line 40 of file PCLImage.h.
std::ostream& pcl::operator<< | ( | std::ostream & | s, |
const ::pcl::PCLPointField & | v | ||
) | [inline] |
Definition at line 44 of file PCLPointField.h.
std::ostream& pcl::operator<< | ( | std::ostream & | s, |
const ::pcl::PCLPointCloud2 & | v | ||
) | [inline] |
Definition at line 58 of file PCLPointCloud2.h.
std::ostream& pcl::operator<< | ( | std::ostream & | os, |
const RangeImageBorderExtractor::Parameters & | p | ||
) | [inline] |
Definition at line 60 of file range_image_border_extractor.hpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const Correspondence & | c | ||
) |
overloaded << operator
Definition at line 88 of file correspondence.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const GradientXY & | p | ||
) | [inline] |
Definition at line 107 of file color_gradient_dot_modality.h.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const BivariatePolynomialT< real > & | p | ||
) |
Definition at line 230 of file bivariate_polynomial.hpp.
std::ostream& pcl::operator<< | ( | std::ostream & | os, |
const _Axis & | p | ||
) |
Definition at line 165 of file point_types.cpp.
std::ostream& pcl::operator<< | ( | std::ostream & | os, |
const NarfKeypoint::Parameters & | p | ||
) | [inline] |
Definition at line 197 of file narf_keypoint.h.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PointXYZ & | p | ||
) |
Definition at line 42 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const RGB & | p | ||
) |
Definition at line 49 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const Intensity & | p | ||
) |
Definition at line 60 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const Intensity8u & | p | ||
) |
Definition at line 67 of file point_types.cpp.
PCL_EXPORTS std::ostream& pcl::operator<< | ( | std::ostream & | os, |
const Intensity32u & | p | ||
) |
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PointXYZI & | p | ||
) |
Definition at line 74 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PointXYZL & | p | ||
) |
Definition at line 81 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const Label & | p | ||
) |
Definition at line 88 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PointXYZRGBA & | p | ||
) |
Definition at line 95 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PointXYZRGB & | p | ||
) |
Definition at line 106 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PointXYZRGBL & | p | ||
) |
Definition at line 116 of file point_types.cpp.
std::ostream& pcl::operator<< | ( | std::ostream & | s, |
const pcl::PointCloud< PointT > & | p | ||
) |
Definition at line 602 of file point_cloud.h.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PointXYZHSV & | p | ||
) |
Definition at line 123 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PointXY & | p | ||
) |
Definition at line 130 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PointUV & | p | ||
) |
Definition at line 137 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const InterestPoint & | p | ||
) |
Definition at line 144 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const Normal & | p | ||
) |
Definition at line 151 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const Axis & | p | ||
) |
Definition at line 158 of file point_types.cpp.
std::ostream& pcl::operator<< | ( | std::ostream & | os, |
const RangeImage & | r | ||
) | [inline] |
/ingroup range_image
Definition at line 817 of file range_image.h.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PointNormal & | p | ||
) |
Definition at line 172 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PointXYZRGBNormal & | p | ||
) |
Definition at line 179 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PointXYZINormal & | p | ||
) |
Definition at line 186 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PointWithRange & | p | ||
) |
Definition at line 193 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PointWithViewpoint & | p | ||
) |
Definition at line 200 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const MomentInvariants & | p | ||
) |
Definition at line 207 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PrincipalRadiiRSD & | p | ||
) |
Definition at line 214 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const Boundary & | p | ||
) |
Definition at line 221 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PrincipalCurvatures & | p | ||
) |
Definition at line 228 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PFHSignature125 & | p | ||
) |
Definition at line 235 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PFHRGBSignature250 & | p | ||
) |
Definition at line 243 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PPFSignature & | p | ||
) |
Definition at line 251 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PPFRGBSignature & | p | ||
) |
Definition at line 258 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const NormalBasedSignature12 & | p | ||
) |
Definition at line 266 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const ShapeContext1980 & | p | ||
) |
Definition at line 274 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const SHOT352 & | p | ||
) |
Definition at line 284 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const SHOT1344 & | p | ||
) |
Definition at line 294 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const ReferenceFrame & | p | ||
) |
Definition at line 304 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const FPFHSignature33 & | p | ||
) |
Definition at line 314 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const VFHSignature308 & | p | ||
) |
Definition at line 322 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const ESFSignature640 & | p | ||
) |
Definition at line 330 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const GFPFHSignature16 & | p | ||
) |
Definition at line 338 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const Narf36 & | p | ||
) |
Definition at line 346 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const BorderDescription & | p | ||
) |
Definition at line 355 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const IntensityGradient & | p | ||
) |
Definition at line 362 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PointWithScale & | p | ||
) |
Definition at line 369 of file point_types.cpp.
std::ostream & pcl::operator<< | ( | std::ostream & | os, |
const PointSurfel & | p | ||
) |
Definition at line 376 of file point_types.cpp.
std::ostream& pcl::operator<< | ( | std::ostream & | os, |
const Histogram< N > & | p | ||
) |
Definition at line 1484 of file point_types.hpp.
pcl::PCL_DEPRECATED | ( | template< typename PointT > void | fromROSMsgconst pcl::PCLPointCloud2 &msg, pcl::PointCloud< PointT > &cloud, const MsgFieldMap &field_map, |
"pcl::fromROSMsg is | deprecated, | ||
please use fromPCLPointCloud2 instead." | |||
) |
Convert a PCLPointCloud2 binary data blob into a pcl::PointCloud<T> object using a field_map.
[in] | msg | the PCLPointCloud2 binary blob |
[out] | cloud | the resultant pcl::PointCloud<T> |
[in] | field_map | a MsgFieldMap object |
MsgFieldMap field_map; createMapping<PointT> (msg.fields, field_map);
pcl::PCL_DEPRECATED | ( | template< typename PointT > void | fromROSMsgconst pcl::PCLPointCloud2 &msg, pcl::PointCloud< PointT > &cloud, |
"pcl::fromROSMsg is | deprecated, | ||
please use fromPCLPointCloud2 instead." | |||
) |
Convert a PCLPointCloud2 binary data blob into a pcl::PointCloud<T> object.
[in] | msg | the PCLPointCloud2 binary blob |
[out] | cloud | the resultant pcl::PointCloud<T> |
pcl::PCL_DEPRECATED | ( | template< typename PointT > void | toROSMsgconst pcl::PointCloud< PointT > &cloud, pcl::PCLPointCloud2 &msg, |
"pcl::fromROSMsg is | deprecated, | ||
please use fromPCLPointCloud2 instead." | |||
) |
Convert a pcl::PointCloud<T> object to a PCLPointCloud2 binary data blob.
[in] | cloud | the input pcl::PointCloud<T> |
[out] | msg | the resultant PCLPointCloud2 binary blob |
pcl::PCL_DEPRECATED | ( | template< typename CloudT > void | toROSMsgconst CloudT &cloud, pcl::PCLImage &msg, |
"pcl::fromROSMsg is | deprecated, | ||
please use fromPCLPointCloud2 instead." | |||
) |
Copy the RGB fields of a PointCloud into pcl::PCLImage format.
[in] | cloud | the point cloud message |
[out] | msg | the resultant pcl::PCLImage CloudT cloud type, CloudT should be akin to pcl::PointCloud<pcl::PointXYZRGBA> |
pcl::PCL_DEPRECATED | ( | inline void | toROSMsgconst pcl::PCLPointCloud2 &cloud, pcl::PCLImage &msg, |
"pcl::fromROSMsg is | deprecated, | ||
please use fromPCLPointCloud2 instead." | |||
) |
Copy the RGB fields of a PCLPointCloud2 msg into pcl::PCLImage format.
cloud | the point cloud message |
msg | the resultant pcl::PCLImage will throw std::runtime_error if there is a problem |
bool pcl::planeWithPlaneIntersection | ( | const Eigen::Vector4f & | plane_a, |
const Eigen::Vector4f & | fplane_b, | ||
Eigen::VectorXf & | line, | ||
double | angular_tolerance = 0.1 |
||
) |
Determine the line of intersection of two non-parallel planes using lagrange multipliers.
[in] | plane_a | coefficients of plane A and plane B in the form ax + by + cz + d = 0 |
[out] | plane_b | coefficients of line where line.tail<3>() = direction vector and line.head<3>() the point on the line clossest to (0, 0, 0) |
Definition at line 71 of file intersections.cpp.
void pcl::PointCloudDepthAndRGBtoXYZRGBA | ( | PointCloud< Intensity > & | depth, |
PointCloud< RGB > & | image, | ||
float & | focal, | ||
PointCloud< PointXYZRGBA > & | out | ||
) |
Convert registered Depth image and RGB image to PointCloudXYZRGBA.
[in] | depth | the input depth image as intensity points in float |
[in] | image | the input RGB image |
[in] | focal | the focal length |
[out] | out | the output pointcloud |
Definition at line 354 of file point_types_conversion.h.
void pcl::PointCloudRGBtoI | ( | PointCloud< RGB > & | in, |
PointCloud< Intensity > & | out | ||
) | [inline] |
void pcl::PointCloudRGBtoI | ( | PointCloud< RGB > & | in, |
PointCloud< Intensity8u > & | out | ||
) | [inline] |
void pcl::PointCloudRGBtoI | ( | PointCloud< RGB > & | in, |
PointCloud< Intensity32u > & | out | ||
) | [inline] |
void pcl::PointCloudXYZRGBAtoXYZHSV | ( | PointCloud< PointXYZRGBA > & | in, |
PointCloud< PointXYZHSV > & | out | ||
) | [inline] |
Convert a XYZRGB point cloud to a XYZHSV.
[in] | in | the input XYZRGB point cloud |
[out] | out | the output XYZHSV point cloud |
Definition at line 316 of file point_types_conversion.h.
void pcl::PointCloudXYZRGBtoXYZHSV | ( | PointCloud< PointXYZRGB > & | in, |
PointCloud< PointXYZHSV > & | out | ||
) | [inline] |
Convert a XYZRGB point cloud to a XYZHSV.
[in] | in | the input XYZRGB point cloud |
[out] | out | the output XYZHSV point cloud |
Definition at line 298 of file point_types_conversion.h.
void pcl::PointCloudXYZRGBtoXYZI | ( | PointCloud< PointXYZRGB > & | in, |
PointCloud< PointXYZI > & | out | ||
) | [inline] |
Convert a XYZRGB point cloud to a XYZI.
[in] | in | the input XYZRGB point cloud |
[out] | out | the output XYZI point cloud |
Definition at line 334 of file point_types_conversion.h.
void pcl::PointRGBtoI | ( | RGB & | in, |
Intensity & | out | ||
) | [inline] |
Convert a RGB point type to a I.
Definition at line 68 of file point_types_conversion.h.
void pcl::PointRGBtoI | ( | RGB & | in, |
Intensity8u & | out | ||
) | [inline] |
Convert a RGB point type to a I.
Definition at line 79 of file point_types_conversion.h.
void pcl::PointRGBtoI | ( | RGB & | in, |
Intensity32u & | out | ||
) | [inline] |
Convert a RGB point type to a I.
Definition at line 91 of file point_types_conversion.h.
double pcl::pointToPlaneDistance | ( | const Point & | p, |
double | a, | ||
double | b, | ||
double | c, | ||
double | d | ||
) | [inline] |
Get the distance from a point to a plane (unsigned) defined by ax+by+cz+d=0.
p | a point |
a | the normalized a coefficient of a plane |
b | the normalized b coefficient of a plane |
c | the normalized c coefficient of a plane |
d | the normalized d coefficient of a plane |
Definition at line 108 of file sac_model_plane.h.
double pcl::pointToPlaneDistance | ( | const Point & | p, |
const Eigen::Vector4f & | plane_coefficients | ||
) | [inline] |
Get the distance from a point to a plane (unsigned) defined by ax+by+cz+d=0.
p | a point |
plane_coefficients | the normalized coefficients (a, b, c, d) of a plane |
Definition at line 119 of file sac_model_plane.h.
double pcl::pointToPlaneDistanceSigned | ( | const Point & | p, |
double | a, | ||
double | b, | ||
double | c, | ||
double | d | ||
) | [inline] |
Get the distance from a point to a plane (signed) defined by ax+by+cz+d=0.
p | a point |
a | the normalized a coefficient of a plane |
b | the normalized b coefficient of a plane |
c | the normalized c coefficient of a plane |
d | the normalized d coefficient of a plane |
Definition at line 83 of file sac_model_plane.h.
double pcl::pointToPlaneDistanceSigned | ( | const Point & | p, |
const Eigen::Vector4f & | plane_coefficients | ||
) | [inline] |
Get the distance from a point to a plane (signed) defined by ax+by+cz+d=0.
p | a point |
plane_coefficients | the normalized coefficients (a, b, c, d) of a plane |
Definition at line 94 of file sac_model_plane.h.
void pcl::PointXYZHSVtoXYZRGB | ( | PointXYZHSV & | in, |
PointXYZRGB & | out | ||
) | [inline] |
Definition at line 176 of file point_types_conversion.h.
void pcl::PointXYZRGBAtoXYZHSV | ( | PointXYZRGBA & | in, |
PointXYZHSV & | out | ||
) | [inline] |
Convert a XYZRGB point type to a XYZHSV.
[in] | in | the input XYZRGB point |
[out] | out | the output XYZHSV point |
Definition at line 140 of file point_types_conversion.h.
void pcl::PointXYZRGBtoXYZHSV | ( | PointXYZRGB & | in, |
PointXYZHSV & | out | ||
) | [inline] |
Convert a XYZRGB point type to a XYZHSV.
[in] | in | the input XYZRGB point |
[out] | out | the output XYZHSV point |
Definition at line 103 of file point_types_conversion.h.
void pcl::PointXYZRGBtoXYZI | ( | PointXYZRGB & | in, |
PointXYZI & | out | ||
) | [inline] |
Convert a XYZRGB point type to a XYZI.
[in] | in | the input XYZRGB point |
[out] | out | the output XYZI point |
Definition at line 56 of file point_types_conversion.h.
void pcl::projectPoint | ( | const Point & | p, |
const Eigen::Vector4f & | model_coefficients, | ||
Point & | q | ||
) | [inline] |
Project a point on a planar model given by a set of normalized coefficients.
[in] | p | the input point to project |
[in] | model_coefficients | the coefficients of the plane (a, b, c, d) that satisfy ax+by+cz+d=0 |
[out] | q | the resultant projected point |
Definition at line 56 of file sac_model_plane.h.
void pcl::read | ( | std::istream & | stream, |
Type & | value | ||
) |
Function for reading data from a stream.
Definition at line 47 of file region_xy.h.
void pcl::read | ( | std::istream & | stream, |
Type * | value, | ||
int | nr_values | ||
) |
Function for reading data arrays from a stream.
Definition at line 54 of file region_xy.h.
bool pcl::refineNormal | ( | const PointCloud< NormalT > & | cloud, |
int | index, | ||
const std::vector< int > & | k_indices, | ||
const std::vector< float > & | k_sqr_distances, | ||
NormalT & | point | ||
) | [inline] |
Refine an indexed point based on its neighbors, this function only writes to the normal_* fields.
cloud | the point cloud data |
index | a valid index in cloud representing a valid (i.e., finite) query point |
k_indices | indices of neighboring points |
k_sqr_distances | squared distances to the neighboring points |
point | the output point, only normal_* fields are written |
Definition at line 81 of file normal_refinement.h.
void pcl::removeNaNFromPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
std::vector< int > & | index | ||
) |
Removes points with x, y, or z equal to NaN.
cloud_in | the input point cloud |
index | the mapping (ordered): cloud_out.points[i] = cloud_in.points[index[i]] |
Definition at line 45 of file filter_indices.hpp.
void pcl::removeNaNFromPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
pcl::PointCloud< PointT > & | cloud_out, | ||
std::vector< int > & | index | ||
) |
Removes points with x, y, or z equal to NaN.
[in] | cloud_in | the input point cloud |
[out] | cloud_out | the input point cloud |
[out] | index | the mapping (ordered): cloud_out.points[i] = cloud_in.points[index[i]] |
Definition at line 46 of file filter.hpp.
void pcl::removeNaNNormalsFromPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
pcl::PointCloud< PointT > & | cloud_out, | ||
std::vector< int > & | index | ||
) |
Removes points that have their normals invalid (i.e., equal to NaN)
[in] | cloud_in | the input point cloud |
[out] | cloud_out | the input point cloud |
[out] | index | the mapping (ordered): cloud_out.points[i] = cloud_in.points[index[i]] |
Definition at line 97 of file filter.hpp.
static const std::map<pcl::SacModel, unsigned int> pcl::SAC_SAMPLE_SIZE | ( | sample_size_pairs | , |
sample_size_pairs+ | sizeofsample_size_pairs)/sizeof(SampleSizeModel | ||
) | [static] |
void pcl::seededHueSegmentation | ( | const PointCloud< PointXYZRGB > & | cloud, |
const boost::shared_ptr< search::Search< PointXYZRGB > > & | tree, | ||
float | tolerance, | ||
PointIndices & | indices_in, | ||
PointIndices & | indices_out, | ||
float | delta_hue = 0.0 |
||
) |
Decompose a region of space into clusters based on the Euclidean distance between points.
[in] | cloud | the point cloud message |
[in] | tree | the spatial locator (e.g., kd-tree) used for nearest neighbors searching |
[in] | tolerance | the spatial cluster tolerance as a measure in L2 Euclidean space |
[in] | indices_in | the cluster containing the seed point indices (as a vector of PointIndices) |
[out] | indices_out | |
[in] | delta_hue |
Definition at line 46 of file seeded_hue_segmentation.hpp.
void pcl::seededHueSegmentation | ( | const PointCloud< PointXYZRGB > & | cloud, |
const boost::shared_ptr< search::Search< PointXYZRGBL > > & | tree, | ||
float | tolerance, | ||
PointIndices & | indices_in, | ||
PointIndices & | indices_out, | ||
float | delta_hue = 0.0 |
||
) |
Decompose a region of space into clusters based on the Euclidean distance between points.
[in] | cloud | the point cloud message |
[in] | tree | the spatial locator (e.g., kd-tree) used for nearest neighbors searching |
[in] | tolerance | the spatial cluster tolerance as a measure in L2 Euclidean space |
[in] | indices_in | the cluster containing the seed point indices (as a vector of PointIndices) |
[out] | indices_out | |
[in] | delta_hue |
Definition at line 122 of file seeded_hue_segmentation.hpp.
void pcl::setFieldValue | ( | PointT & | pt, |
size_t | field_offset, | ||
const ValT & | value | ||
) | [inline] |
Set the value at a specified field in a point.
[out] | pt | the point to set the value to |
[in] | field_offset | the offset of the field |
[in] | value | the value to set |
Definition at line 285 of file point_traits.h.
void pcl::solvePlaneParameters | ( | const Eigen::Matrix3f & | covariance_matrix, |
const Eigen::Vector4f & | point, | ||
Eigen::Vector4f & | plane_parameters, | ||
float & | curvature | ||
) | [inline] |
Solve the eigenvalues and eigenvectors of a given 3x3 covariance matrix, and estimate the least-squares plane normal and surface curvature.
covariance_matrix | the 3x3 covariance matrix |
point | a point lying on the least-squares plane (SSE aligned) |
plane_parameters | the resultant plane parameters as: a, b, c, d (ax + by + cz + d = 0) |
curvature | the estimated surface curvature as a measure of
|
Definition at line 48 of file feature.hpp.
void pcl::solvePlaneParameters | ( | const Eigen::Matrix3f & | covariance_matrix, |
float & | nx, | ||
float & | ny, | ||
float & | nz, | ||
float & | curvature | ||
) | [inline] |
Solve the eigenvalues and eigenvectors of a given 3x3 covariance matrix, and estimate the least-squares plane normal and surface curvature.
covariance_matrix | the 3x3 covariance matrix |
nx | the resultant X component of the plane normal |
ny | the resultant Y component of the plane normal |
nz | the resultant Z component of the plane normal |
curvature | the estimated surface curvature as a measure of
|
Definition at line 61 of file feature.hpp.
float pcl::squaredEuclideanDistance | ( | const pcl::segmentation::grabcut::Color & | c1, |
const pcl::segmentation::grabcut::Color & | c2 | ||
) |
Definition at line 15 of file grabcut.hpp.
float pcl::squaredEuclideanDistance | ( | const PointType1 & | p1, |
const PointType2 & | p2 | ||
) | [inline] |
Calculate the squared euclidean distance between the two given points.
[in] | p1 | the first point |
[in] | p2 | the second point |
Definition at line 174 of file common/include/pcl/common/distances.h.
float pcl::squaredEuclideanDistance | ( | const PointXY & | p1, |
const PointXY & | p2 | ||
) | [inline] |
Calculate the squared euclidean distance between the two given points.
[in] | p1 | the first point |
[in] | p2 | the second point |
Definition at line 185 of file common/include/pcl/common/distances.h.
void pcl::toPCLPointCloud2 | ( | const pcl::PointCloud< PointT > & | cloud, |
pcl::PCLPointCloud2 & | msg | ||
) |
Convert a pcl::PointCloud<T> object to a PCLPointCloud2 binary data blob.
[in] | cloud | the input pcl::PointCloud<T> |
[out] | msg | the resultant PCLPointCloud2 binary blob |
Definition at line 237 of file conversions.h.
void pcl::toPCLPointCloud2 | ( | const CloudT & | cloud, |
pcl::PCLImage & | msg | ||
) |
Copy the RGB fields of a PointCloud into pcl::PCLImage format.
[in] | cloud | the point cloud message |
[out] | msg | the resultant pcl::PCLImage CloudT cloud type, CloudT should be akin to pcl::PointCloud<pcl::PointXYZRGBA> |
Definition at line 275 of file conversions.h.
void pcl::toPCLPointCloud2 | ( | const pcl::PCLPointCloud2 & | cloud, |
pcl::PCLImage & | msg | ||
) | [inline] |
Copy the RGB fields of a PCLPointCloud2 msg into pcl::PCLImage format.
cloud | the point cloud message |
msg | the resultant pcl::PCLImage will throw std::runtime_error if there is a problem |
Definition at line 308 of file conversions.h.
void pcl::toROSMsg | ( | const pcl::PointCloud< PointT > & | cloud, |
pcl::PCLPointCloud2 & | msg | ||
) |
Definition at line 98 of file ros/conversions.h.
void pcl::toROSMsg | ( | const CloudT & | cloud, |
pcl::PCLImage & | msg | ||
) |
Definition at line 113 of file ros/conversions.h.
void pcl::toROSMsg | ( | const pcl::PCLPointCloud2 & | cloud, |
pcl::PCLImage & | msg | ||
) | [inline] |
Definition at line 127 of file ros/conversions.h.
PointT pcl::transformPoint | ( | const PointT & | point, |
const Eigen::Affine3f & | transform | ||
) | [inline] |
Definition at line 393 of file common/include/pcl/common/transforms.h.
void pcl::transformPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
pcl::PointCloud< PointT > & | cloud_out, | ||
const Eigen::Affine3f & | transform | ||
) |
Definition at line 63 of file common/include/pcl/common/transforms.h.
void pcl::transformPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const std::vector< int > & | indices, | ||
pcl::PointCloud< PointT > & | cloud_out, | ||
const Eigen::Affine3f & | transform | ||
) |
Definition at line 84 of file common/include/pcl/common/transforms.h.
void pcl::transformPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const pcl::PointIndices & | indices, | ||
pcl::PointCloud< PointT > & | cloud_out, | ||
const Eigen::Affine3f & | transform | ||
) |
Definition at line 109 of file common/include/pcl/common/transforms.h.
void pcl::transformPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
pcl::PointCloud< PointT > & | cloud_out, | ||
const Eigen::Matrix4f & | transform | ||
) |
Definition at line 199 of file common/include/pcl/common/transforms.h.
void pcl::transformPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const std::vector< int > & | indices, | ||
pcl::PointCloud< PointT > & | cloud_out, | ||
const Eigen::Matrix4f & | transform | ||
) |
Definition at line 224 of file common/include/pcl/common/transforms.h.
void pcl::transformPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const pcl::PointIndices & | indices, | ||
pcl::PointCloud< PointT > & | cloud_out, | ||
const Eigen::Matrix4f & | transform | ||
) |
Definition at line 249 of file common/include/pcl/common/transforms.h.
void pcl::transformPointCloud | ( | const pcl::PointCloud< PointT > & | cloud_in, |
pcl::PointCloud< PointT > & | cloud_out, | ||
const Eigen::Vector3f & | offset, | ||
const Eigen::Quaternionf & | rotation | ||
) | [inline] |
Definition at line 352 of file common/include/pcl/common/transforms.h.
void pcl::transformPointCloudWithNormals | ( | const pcl::PointCloud< PointT > & | cloud_in, |
pcl::PointCloud< PointT > & | cloud_out, | ||
const Eigen::Transform< Scalar, 3, Eigen::Affine > & | transform | ||
) |
Transform a point cloud and rotate its normals using an Eigen transform.
[in] | cloud_in | the input point cloud |
[out] | cloud_out | the resultant output point cloud |
[in] | transform | an affine transformation (typically a rigid transformation) |
Definition at line 143 of file transforms.hpp.
void pcl::transformPointCloudWithNormals | ( | const pcl::PointCloud< PointT > & | cloud_in, |
pcl::PointCloud< PointT > & | cloud_out, | ||
const Eigen::Affine3f & | transform | ||
) |
Definition at line 129 of file common/include/pcl/common/transforms.h.
void pcl::transformPointCloudWithNormals | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const std::vector< int > & | indices, | ||
pcl::PointCloud< PointT > & | cloud_out, | ||
const Eigen::Transform< Scalar, 3, Eigen::Affine > & | transform | ||
) |
Transform a point cloud and rotate its normals using an Eigen transform.
[in] | cloud_in | the input point cloud |
[in] | indices | the set of point indices to use from the input point cloud |
[out] | cloud_out | the resultant output point cloud |
[in] | transform | an affine transformation (typically a rigid transformation) |
Definition at line 207 of file transforms.hpp.
void pcl::transformPointCloudWithNormals | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const std::vector< int > & | indices, | ||
pcl::PointCloud< PointT > & | cloud_out, | ||
const Eigen::Affine3f & | transform | ||
) |
Definition at line 149 of file common/include/pcl/common/transforms.h.
void pcl::transformPointCloudWithNormals | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const pcl::PointIndices & | indices, | ||
pcl::PointCloud< PointT > & | cloud_out, | ||
const Eigen::Transform< Scalar, 3, Eigen::Affine > & | transform | ||
) |
Transform a point cloud and rotate its normals using an Eigen transform.
[in] | cloud_in | the input point cloud |
[in] | indices | the set of point indices to use from the input point cloud |
[out] | cloud_out | the resultant output point cloud |
[in] | transform | an affine transformation (typically a rigid transformation) |
Definition at line 164 of file common/include/pcl/common/transforms.h.
void pcl::transformPointCloudWithNormals | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const pcl::PointIndices & | indices, | ||
pcl::PointCloud< PointT > & | cloud_out, | ||
const Eigen::Affine3f & | transform | ||
) |
Definition at line 174 of file common/include/pcl/common/transforms.h.
void pcl::transformPointCloudWithNormals | ( | const pcl::PointCloud< PointT > & | cloud_in, |
pcl::PointCloud< PointT > & | cloud_out, | ||
const Eigen::Matrix4f & | transform | ||
) |
Definition at line 275 of file common/include/pcl/common/transforms.h.
void pcl::transformPointCloudWithNormals | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const std::vector< int > & | indices, | ||
pcl::PointCloud< PointT > & | cloud_out, | ||
const Eigen::Matrix4f & | transform | ||
) |
Definition at line 302 of file common/include/pcl/common/transforms.h.
void pcl::transformPointCloudWithNormals | ( | const pcl::PointCloud< PointT > & | cloud_in, |
const pcl::PointIndices & | indices, | ||
pcl::PointCloud< PointT > & | cloud_out, | ||
const Eigen::Matrix4f & | transform | ||
) |
Definition at line 330 of file common/include/pcl/common/transforms.h.
void pcl::transformPointCloudWithNormals | ( | const pcl::PointCloud< PointT > & | cloud_in, |
pcl::PointCloud< PointT > & | cloud_out, | ||
const Eigen::Vector3f & | offset, | ||
const Eigen::Quaternionf & | rotation | ||
) |
Definition at line 374 of file common/include/pcl/common/transforms.h.
Eigen::internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type pcl::umeyama | ( | const Eigen::MatrixBase< Derived > & | src, |
const Eigen::MatrixBase< OtherDerived > & | dst, | ||
bool | with_scaling = false |
||
) |
Returns the transformation between two point sets. The algorithm is based on: "Least-squares estimation of transformation parameters between two point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573.
It estimates parameters and such that
is minimized.
The algorithm is based on the analysis of the covariance matrix of the input point sets and where is corresponding to the dimension (which is typically small). The analysis is involving the SVD having a complexity of though the actual computational effort lies in the covariance matrix computation which has an asymptotic lower bound of when the input point sets have dimension .
[in] | src | Source points |
[in] | dst | Destination points . |
[in] | with_scaling | Sets when false is passed. (default: false) |
minimizing the resudiual above. This transformation is always returned as an Eigen::Matrix.
void pcl::write | ( | std::ostream & | stream, |
Type | value | ||
) |
Function for writing data to a stream.
Definition at line 64 of file region_xy.h.
void pcl::write | ( | std::ostream & | stream, |
Type * | value, | ||
int | nr_values | ||
) |
Function for writing data arrays to a stream.
Definition at line 71 of file region_xy.h.
const unsigned int pcl::edgeTable[256] |
Definition at line 59 of file marching_cubes.h.
struct pcl::ISMPeak pcl::EIGEN_ALIGN16 |
const int pcl::I_SHIFT_EDGE[3][2] |
{ {0,1}, {1,3}, {1,2} }
Definition at line 57 of file grid_projection.h.
const int pcl::I_SHIFT_EP[12][2] |
{ {0, 4}, {1, 5}, {2, 6}, {3, 7}, {0, 1}, {1, 2}, {2, 3}, {3, 0}, {4, 5}, {5, 6}, {6, 7}, {7, 4} }
The 12 edges of a cell.
Definition at line 47 of file grid_projection.h.
const int pcl::I_SHIFT_PT[4] |
{ 0, 4, 5, 7 }
Definition at line 53 of file grid_projection.h.
const int pcl::SAC_LMEDS = 1 [static] |
Definition at line 47 of file method_types.h.
const int pcl::SAC_MLESAC = 5 [static] |
Definition at line 51 of file method_types.h.
const int pcl::SAC_MSAC = 2 [static] |
Definition at line 48 of file method_types.h.
const int pcl::SAC_PROSAC = 6 [static] |
Definition at line 52 of file method_types.h.
const int pcl::SAC_RANSAC = 0 [static] |
Definition at line 46 of file method_types.h.
const int pcl::SAC_RMSAC = 4 [static] |
Definition at line 50 of file method_types.h.
const int pcl::SAC_RRANSAC = 3 [static] |
Definition at line 49 of file method_types.h.
const int pcl::triTable[256][16] |
Definition at line 93 of file marching_cubes.h.