Classes | Files | Typedefs | Enumerations | Functions
Common components

Classes

struct  pcl::_PointXYZI
 A point structure representing Euclidean xyz coordinates, and the intensity value. More...
struct  pcl::_ReferenceFrame
 A structure representing the Local Reference Frame of a point. More...
class  mets::abstract_search< move_manager_type >
 An abstract search. More...
struct  pcl::Axis
 A point structure representing an Axis using its normal coordinates. (SSE friendly) More...
class  mets::best_ever_solution
 The best ever solution recorder can be used as a simple solution recorder that just records the best copyable solution found during its lifetime. More...
class  pcl::BivariatePolynomialT< real >
 This represents a bivariate polynomial and provides some functionality for it. More...
struct  pcl::BorderDescription
 A structure to store if a point in a range image lies on a border between an obstacle and the background. More...
struct  pcl::Boundary
 A point structure representing a description of whether a point is lying on a surface boundary or not. More...
struct  pcl::Correspondence
 Correspondence represents a match between two entities (e.g., points, descriptors, etc). This is represesented via the indices of a source point and a target point, and the distance between them. More...
struct  pcl::ESFSignature640
 A point structure representing the Ensemble of Shape Functions (ESF). More...
class  mets::forever
struct  pcl::FPFHSignature33
 A point structure representing the Fast Point Feature Histogram (FPFH). More...
class  pcl::GaussianKernel
struct  pcl::GFPFHSignature16
 A point structure representing the GFPFH descriptor with 16 bins. More...
struct  pcl::GradientXY
 A point structure representing Euclidean xyz coordinates, and the intensity value. More...
struct  pcl::Histogram< N >
 A point structure representing an N-D histogram. More...
struct  mets::improvement_logger< neighborhood_t >
struct  pcl::Intensity
 A point structure representing the grayscale intensity in single-channel images. Intensity is represented as a float value. More...
struct  pcl::Intensity32u
 A point structure representing the grayscale intensity in single-channel images. Intensity is represented as a uint8_t value. More...
struct  pcl::Intensity8u
 A point structure representing the grayscale intensity in single-channel images. Intensity is represented as a uint8_t value. More...
struct  pcl::IntensityGradient
 A point structure representing the intensity gradient of an XYZI point cloud. More...
struct  pcl::InterestPoint
 A point structure representing an interest point with Euclidean xyz coordinates, and an interest value. More...
struct  mets::iteration_logger< neighborhood_t >
class  mets::iteration_termination_criteria
 Termination criteria based on the number of iterations. More...
struct  pcl::MomentInvariants
 A point structure representing the three moment invariants. More...
struct  pcl::Narf36
 A point structure representing the Narf descriptor. More...
struct  pcl::NdConcatenateFunctor< PointInT, PointOutT >
 Helper functor structure for concatenate. More...
class  mets::noimprove_termination_criteria
 Termination criteria based on the number of iterations without an improvement. More...
struct  pcl::Normal
 A point structure representing normal coordinates and the surface curvature estimate. (SSE friendly) More...
struct  pcl::NormalBasedSignature12
 A point structure representing the Normal Based Signature for a feature matrix of 4-by-3. More...
class  pcl::PCA< PointT >
class  pcl::PCLBase< PointT >
 PCL base class. Implements methods that are used by most PCL algorithms. More...
struct  pcl::PFHRGBSignature250
 A point structure representing the Point Feature Histogram with colors (PFHRGB). More...
struct  pcl::PFHSignature125
 A point structure representing the Point Feature Histogram (PFH). More...
class  pcl::PiecewiseLinearFunction
 This provides functionalities to efficiently return values for piecewise linear function. More...
struct  pcl::PointCorrespondence3D
 Representation of a (possible) correspondence between two 3D points in two different coordinate frames (e.g. from feature matching) More...
struct  pcl::PointCorrespondence6D
 Representation of a (possible) correspondence between two points (e.g. from feature matching), that encode complete 6DOF transoformations. More...
struct  pcl::PointNormal
 A point structure representing Euclidean xyz coordinates, together with normal coordinates and the surface curvature estimate. (SSE friendly) More...
struct  pcl::PointRGB
 A point structure for representing RGB color. More...
struct  pcl::PointSurfel
 A surfel, that is, a point structure representing Euclidean xyz coordinates, together with normal coordinates, a RGBA color, a radius, a confidence value and the surface curvature estimate. More...
struct  pcl::PointUV
 A 2D point structure representing pixel image coordinates. More...
struct  pcl::PointWithRange
 A point structure representing Euclidean xyz coordinates, padded with an extra range float. More...
struct  pcl::PointWithScale
 A point structure representing a 3-D position and scale. More...
struct  pcl::PointWithViewpoint
 A point structure representing Euclidean xyz coordinates together with the viewpoint from which it was seen. More...
struct  pcl::PointXY
 A 2D point structure representing Euclidean xy coordinates. More...
struct  pcl::PointXYZ
 A point structure representing Euclidean xyz coordinates. (SSE friendly) More...
struct  pcl::PointXYZINormal
 A point structure representing Euclidean xyz coordinates, intensity, together with normal coordinates and the surface curvature estimate. More...
struct  pcl::PointXYZRGB
 A point structure representing Euclidean xyz coordinates, and the RGB color. More...
struct  pcl::PointXYZRGBA
 A point structure representing Euclidean xyz coordinates, and the RGBA color. More...
struct  pcl::PointXYZRGBNormal
 A point structure representing Euclidean xyz coordinates, and the RGB color, together with normal coordinates and the surface curvature estimate. Due to historical reasons (PCL was first developed as a ROS package), the RGB information is packed into an integer and casted to a float. This is something we wish to remove in the near future, but in the meantime, the following code snippet should help you pack and unpack RGB colors in your PointXYZRGB structure: More...
class  pcl::PolynomialCalculationsT< real >
 This provides some functionality for polynomials, like finding roots or approximating bivariate polynomials. More...
class  pcl::PosesFromMatches
 calculate 3D transformation based on point correspondencdes More...
struct  pcl::PPFRGBSignature
 A point structure for storing the Point Pair Color Feature (PPFRGB) values. More...
struct  pcl::PPFSignature
 A point structure for storing the Point Pair Feature (PPF) values. More...
struct  pcl::PrincipalCurvatures
 A point structure representing the principal curvatures and their magnitudes. More...
struct  pcl::PrincipalRadiiRSD
 A point structure representing the minimum and maximum surface radii (in meters) computed using RSD. More...
class  pcl::ScopeTime
 Class to measure the time spent in a scope. More...
class  mets::search_listener< move_manager_type >
 An object that is called back during the search progress. More...
struct  pcl::ShapeContext1980
 A point structure representing a Shape Context. More...
struct  pcl::SHOT1344
 A point structure representing the generic Signature of Histograms of OrienTations (SHOT) - shape+color. More...
struct  pcl::SHOT352
 A point structure representing the generic Signature of Histograms of OrienTations (SHOT) - shape only. More...
class  mets::solution_recorder
 The solution recorder is used by search algorithm, at the end of each iteration, to record the best seen solution. More...
class  pcl::StopWatch
 Simple stopwatch. More...
class  mets::termination_criteria_chain
 Function object expressing a termination criteria. More...
class  mets::threshold_termination_criteria
 Termination criteria based on cost value. More...
class  pcl::TimeTrigger
 Timer class that invokes registered callback methods periodically. More...
class  pcl::TransformationFromCorrespondences
 Calculates a transformation based on corresponding 3D points. More...
class  pcl::VectorAverage< real, dimension >
 Calculates the weighted average and the covariance matrix. More...
struct  pcl::VFHSignature308
 A point structure representing the Viewpoint Feature Histogram (VFH). More...

Files

file  angles.h
file  centroid.h
file  common/include/pcl/common/common.h
file  common/include/pcl/common/distances.h
file  common/include/pcl/common/file_io.h
file  common/include/pcl/common/geometry.h
file  common/include/pcl/common/geometry.h
file  intersections.h
file  norms.h
file  common/include/pcl/point_types.h
file  random.h
 

CloudGenerator class generates a point cloud using some randoom number generator. Generators can be found in and easily extensible.


file  common/time.h

Typedefs

typedef std::bitset< 32 > pcl::BorderTraits
 Data type to store extended information about a transition from foreground to backgroundSpecification of the fields for BorderDescription::traits.

Enumerations

enum  pcl::BorderTrait {
  pcl::BORDER_TRAIT__OBSTACLE_BORDER, pcl::BORDER_TRAIT__SHADOW_BORDER, pcl::BORDER_TRAIT__VEIL_POINT, pcl::BORDER_TRAIT__SHADOW_BORDER_TOP,
  pcl::BORDER_TRAIT__SHADOW_BORDER_RIGHT, pcl::BORDER_TRAIT__SHADOW_BORDER_BOTTOM, pcl::BORDER_TRAIT__SHADOW_BORDER_LEFT, pcl::BORDER_TRAIT__OBSTACLE_BORDER_TOP,
  pcl::BORDER_TRAIT__OBSTACLE_BORDER_RIGHT, pcl::BORDER_TRAIT__OBSTACLE_BORDER_BOTTOM, pcl::BORDER_TRAIT__OBSTACLE_BORDER_LEFT, pcl::BORDER_TRAIT__VEIL_POINT_TOP,
  pcl::BORDER_TRAIT__VEIL_POINT_RIGHT, pcl::BORDER_TRAIT__VEIL_POINT_BOTTOM, pcl::BORDER_TRAIT__VEIL_POINT_LEFT
}
 Specification of the fields for BorderDescription::traits. More...
enum  pcl::NormType {
  pcl::L1, pcl::L2_SQR, pcl::L2, pcl::LINF,
  pcl::JM, pcl::B, pcl::SUBLINEAR, pcl::CS,
  pcl::DIV, pcl::PF, pcl::K, pcl::KL,
  pcl::HIK
}
 Enum that defines all the types of norms available. More...

Functions

template<typename FloatVectorT >
float pcl::B_Norm (FloatVectorT A, FloatVectorT B, int dim)
 Compute the B norm of the vector between two points.
template<typename PointT >
float pcl::calculatePolygonArea (const pcl::PointCloud< PointT > &polygon)
 Calculate the area of a polygon given a point cloud that defines the polygon.
template<typename PointT , typename Scalar >
unsigned int pcl::compute3DCentroid (ConstCloudIterator< PointT > &cloud_iterator, Eigen::Matrix< Scalar, 4, 1 > &centroid)
 Compute the 3D (X-Y-Z) centroid of a set of points and return it as a 3D vector.
template<typename PointT , typename Scalar >
unsigned int pcl::compute3DCentroid (const pcl::PointCloud< PointT > &cloud, Eigen::Matrix< Scalar, 4, 1 > &centroid)
 Compute the 3D (X-Y-Z) centroid of a set of points and return it as a 3D vector.
template<typename PointT , typename Scalar >
unsigned int pcl::compute3DCentroid (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, Eigen::Matrix< Scalar, 4, 1 > &centroid)
 Compute the 3D (X-Y-Z) centroid of a set of points using their indices and return it as a 3D vector.
template<typename PointT , typename Scalar >
unsigned int pcl::compute3DCentroid (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, Eigen::Matrix< Scalar, 4, 1 > &centroid)
 Compute the 3D (X-Y-Z) centroid of a set of points using their indices and return it as a 3D vector.
template<typename Matrix , typename Vector >
void pcl::computeCorrespondingEigenVector (const Matrix &mat, const typename Matrix::Scalar &eigenvalue, Vector &eigenvector)
 determines the corresponding eigenvector to the given eigenvalue of the symmetric positive semi definite input matrix
template<typename PointT , typename Scalar >
unsigned int pcl::computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const Eigen::Matrix< Scalar, 4, 1 > &centroid, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix)
 Compute the 3x3 covariance matrix of a given set of points. The result is returned as a Eigen::Matrix3f. Note: the covariance matrix is not normalized with the number of points. For a normalized covariance, please use computeNormalizedCovarianceMatrix.
template<typename PointT , typename Scalar >
unsigned int pcl::computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, const Eigen::Matrix< Scalar, 4, 1 > &centroid, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix)
 Compute the 3x3 covariance matrix of a given set of points using their indices. The result is returned as a Eigen::Matrix3f. Note: the covariance matrix is not normalized with the number of points. For a normalized covariance, please use computeNormalizedCovarianceMatrix.
template<typename PointT , typename Scalar >
unsigned int pcl::computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, const Eigen::Matrix< Scalar, 4, 1 > &centroid, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix)
 Compute the 3x3 covariance matrix of a given set of points using their indices. The result is returned as a Eigen::Matrix3f. Note: the covariance matrix is not normalized with the number of points. For a normalized covariance, please use computeNormalizedCovarianceMatrix.
template<typename PointT , typename Scalar >
unsigned int pcl::computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix)
 Compute the normalized 3x3 covariance matrix for a already demeaned point cloud. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function.
template<typename PointT , typename Scalar >
unsigned int pcl::computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix)
 Compute the normalized 3x3 covariance matrix for a already demeaned point cloud. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function.
template<typename PointT , typename Scalar >
unsigned int pcl::computeCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix)
 Compute the normalized 3x3 covariance matrix for a already demeaned point cloud. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function.
template<typename PointT , typename Scalar >
unsigned int pcl::computeCovarianceMatrixNormalized (const pcl::PointCloud< PointT > &cloud, const Eigen::Matrix< Scalar, 4, 1 > &centroid, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix)
 Compute normalized the 3x3 covariance matrix of a given set of points. The result is returned as a Eigen::Matrix3f. Normalized means that every entry has been divided by the number of points in the point cloud. For small number of points, or if you want explicitely the sample-variance, use computeCovarianceMatrix and scale the covariance matrix with 1 / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by the computeCovarianceMatrix function.
template<typename PointT , typename Scalar >
unsigned int pcl::computeCovarianceMatrixNormalized (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, const Eigen::Matrix< Scalar, 4, 1 > &centroid, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix)
 Compute the normalized 3x3 covariance matrix of a given set of points using their indices. The result is returned as a Eigen::Matrix3f. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, use computeCovarianceMatrix and scale the covariance matrix with 1 / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by the computeCovarianceMatrix function.
template<typename PointT , typename Scalar >
unsigned int pcl::computeCovarianceMatrixNormalized (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, const Eigen::Matrix< Scalar, 4, 1 > &centroid, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix)
 Compute the normalized 3x3 covariance matrix of a given set of points using their indices. The result is returned as a Eigen::Matrix3f. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, use computeCovarianceMatrix and scale the covariance matrix with 1 / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by the computeCovarianceMatrix function.
template<typename PointT , typename Scalar >
unsigned int pcl::computeMeanAndCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix, Eigen::Matrix< Scalar, 4, 1 > &centroid)
 Compute the normalized 3x3 covariance matrix and the centroid of a given set of points in a single loop. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function.
template<typename PointT , typename Scalar >
unsigned int pcl::computeMeanAndCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix, Eigen::Matrix< Scalar, 4, 1 > &centroid)
 Compute the normalized 3x3 covariance matrix and the centroid of a given set of points in a single loop. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function.
template<typename PointT , typename Scalar >
unsigned int pcl::computeMeanAndCovarianceMatrix (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix, Eigen::Matrix< Scalar, 4, 1 > &centroid)
 Compute the normalized 3x3 covariance matrix and the centroid of a given set of points in a single loop. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function.
template<typename PointT , typename Scalar >
void pcl::computeNDCentroid (const pcl::PointCloud< PointT > &cloud, Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > &centroid)
 General, all purpose nD centroid estimation for a set of points using their indices.
template<typename PointT , typename Scalar >
void pcl::computeNDCentroid (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > &centroid)
 General, all purpose nD centroid estimation for a set of points using their indices.
template<typename PointT , typename Scalar >
void pcl::computeNDCentroid (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > &centroid)
 General, all purpose nD centroid estimation for a set of points using their indices.
template<typename PointIn1T , typename PointIn2T , typename PointOutT >
void pcl::concatenateFields (const pcl::PointCloud< PointIn1T > &cloud1_in, const pcl::PointCloud< PointIn2T > &cloud2_in, pcl::PointCloud< PointOutT > &cloud_out)
 Concatenate two datasets representing different fields.
PCL_EXPORTS bool pcl::concatenateFields (const pcl::PCLPointCloud2 &cloud1_in, const pcl::PCLPointCloud2 &cloud2_in, pcl::PCLPointCloud2 &cloud_out)
 Concatenate two datasets representing different fields.
PCL_EXPORTS bool pcl::concatenatePointCloud (const pcl::PCLPointCloud2 &cloud1, const pcl::PCLPointCloud2 &cloud2, pcl::PCLPointCloud2 &cloud_out)
 Concatenate two pcl::PCLPointCloud2.
PCL_EXPORTS void pcl::copyPointCloud (const pcl::PCLPointCloud2 &cloud_in, const std::vector< int > &indices, pcl::PCLPointCloud2 &cloud_out)
 Extract the indices of a given point cloud as a new point cloud.
PCL_EXPORTS void pcl::copyPointCloud (const pcl::PCLPointCloud2 &cloud_in, const std::vector< int, Eigen::aligned_allocator< int > > &indices, pcl::PCLPointCloud2 &cloud_out)
 Extract the indices of a given point cloud as a new point cloud.
PCL_EXPORTS void pcl::copyPointCloud (const pcl::PCLPointCloud2 &cloud_in, pcl::PCLPointCloud2 &cloud_out)
 Copy fields and point cloud data from cloud_in to cloud_out.
template<typename PointT >
void pcl::copyPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, pcl::PointCloud< PointT > &cloud_out)
 Extract the indices of a given point cloud as a new point cloud.
template<typename PointT >
void pcl::copyPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int, Eigen::aligned_allocator< int > > &indices, pcl::PointCloud< PointT > &cloud_out)
 Extract the indices of a given point cloud as a new point cloud.
template<typename PointT >
void pcl::copyPointCloud (const pcl::PointCloud< PointT > &cloud_in, const PointIndices &indices, pcl::PointCloud< PointT > &cloud_out)
 Extract the indices of a given point cloud as a new point cloud.
template<typename PointT >
void pcl::copyPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< pcl::PointIndices > &indices, pcl::PointCloud< PointT > &cloud_out)
 Extract the indices of a given point cloud as a new point cloud.
template<typename PointInT , typename PointOutT >
void pcl::copyPointCloud (const pcl::PointCloud< PointInT > &cloud_in, pcl::PointCloud< PointOutT > &cloud_out)
 Copy all the fields from a given point cloud into a new point cloud.
template<typename PointInT , typename PointOutT >
void pcl::copyPointCloud (const pcl::PointCloud< PointInT > &cloud_in, const std::vector< int > &indices, pcl::PointCloud< PointOutT > &cloud_out)
 Extract the indices of a given point cloud as a new point cloud.
template<typename PointInT , typename PointOutT >
void pcl::copyPointCloud (const pcl::PointCloud< PointInT > &cloud_in, const std::vector< int, Eigen::aligned_allocator< int > > &indices, pcl::PointCloud< PointOutT > &cloud_out)
 Extract the indices of a given point cloud as a new point cloud.
template<typename PointInT , typename PointOutT >
void pcl::copyPointCloud (const pcl::PointCloud< PointInT > &cloud_in, const PointIndices &indices, pcl::PointCloud< PointOutT > &cloud_out)
 Extract the indices of a given point cloud as a new point cloud.
template<typename PointInT , typename PointOutT >
void pcl::copyPointCloud (const pcl::PointCloud< PointInT > &cloud_in, const std::vector< pcl::PointIndices > &indices, pcl::PointCloud< PointOutT > &cloud_out)
 Extract the indices of a given point cloud as a new point cloud.
template<typename FloatVectorT >
float pcl::CS_Norm (FloatVectorT A, FloatVectorT B, int dim)
 Compute the CS norm of the vector between two points.
float pcl::deg2rad (float alpha)
 Convert an angle from degrees to radians.
double pcl::deg2rad (double alpha)
 Convert an angle from degrees to radians.
template<typename PointT , typename Scalar >
void pcl::demeanPointCloud (ConstCloudIterator< PointT > &cloud_iterator, const Eigen::Matrix< Scalar, 4, 1 > &centroid, pcl::PointCloud< PointT > &cloud_out, int npts=0)
 Subtract a centroid from a point cloud and return the de-meaned representation.
template<typename PointT , typename Scalar >
void pcl::demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const Eigen::Matrix< Scalar, 4, 1 > &centroid, pcl::PointCloud< PointT > &cloud_out)
 Subtract a centroid from a point cloud and return the de-meaned representation.
template<typename PointT , typename Scalar >
void pcl::demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, const Eigen::Matrix< Scalar, 4, 1 > &centroid, pcl::PointCloud< PointT > &cloud_out)
 Subtract a centroid from a point cloud and return the de-meaned representation.
template<typename PointT , typename Scalar >
void pcl::demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const pcl::PointIndices &indices, const Eigen::Matrix< Scalar, 4, 1 > &centroid, pcl::PointCloud< PointT > &cloud_out)
 Subtract a centroid from a point cloud and return the de-meaned representation.
template<typename PointT , typename Scalar >
void pcl::demeanPointCloud (ConstCloudIterator< PointT > &cloud_iterator, const Eigen::Matrix< Scalar, 4, 1 > &centroid, Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > &cloud_out, int npts=0)
 Subtract a centroid from a point cloud and return the de-meaned representation as an Eigen matrix.
template<typename PointT , typename Scalar >
void pcl::demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const Eigen::Matrix< Scalar, 4, 1 > &centroid, Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > &cloud_out)
 Subtract a centroid from a point cloud and return the de-meaned representation as an Eigen matrix.
template<typename PointT , typename Scalar >
void pcl::demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, const Eigen::Matrix< Scalar, 4, 1 > &centroid, Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > &cloud_out)
 Subtract a centroid from a point cloud and return the de-meaned representation as an Eigen matrix.
template<typename PointT , typename Scalar >
void pcl::demeanPointCloud (const pcl::PointCloud< PointT > &cloud_in, const pcl::PointIndices &indices, const Eigen::Matrix< Scalar, 4, 1 > &centroid, Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > &cloud_out)
 Subtract a centroid from a point cloud and return the de-meaned representation as an Eigen matrix.
template<typename FloatVectorT >
float pcl::Div_Norm (FloatVectorT A, FloatVectorT B, int dim)
 Compute the div norm of the vector between two points.
template<typename Matrix , typename Vector >
void pcl::eigen22 (const Matrix &mat, typename Matrix::Scalar &eigenvalue, Vector &eigenvector)
 determine the smallest eigenvalue and its corresponding eigenvector
template<typename Matrix , typename Vector >
void pcl::eigen22 (const Matrix &mat, Matrix &eigenvectors, Vector &eigenvalues)
 determine the smallest eigenvalue and its corresponding eigenvector
template<typename Matrix , typename Vector >
void pcl::eigen33 (const Matrix &mat, typename Matrix::Scalar &eigenvalue, Vector &eigenvector)
 determines the eigenvector and eigenvalue of the smallest eigenvalue of the symmetric positive semi definite input matrix
template<typename Matrix , typename Vector >
void pcl::eigen33 (const Matrix &mat, Vector &evals)
 determines the eigenvalues of the symmetric positive semi definite input matrix
template<typename Matrix , typename Vector >
void pcl::eigen33 (const Matrix &mat, Matrix &evecs, Vector &evals)
 determines the eigenvalues and corresponding eigenvectors of the symmetric positive semi definite input matrix
double pcl::getAngle3D (const Eigen::Vector4f &v1, const Eigen::Vector4f &v2)
 Compute the smallest angle between two vectors in the [ 0, PI ) interval in 3D.
template<typename PointT >
double pcl::getCircumcircleRadius (const PointT &pa, const PointT &pb, const PointT &pc)
 Compute the radius of a circumscribed circle for a triangle formed of three points pa, pb, and pc.
PCL_EXPORTS bool pcl::getEigenAsPointCloud (Eigen::MatrixXf &in, pcl::PCLPointCloud2 &out)
 Copy the XYZ dimensions from an Eigen MatrixXf into a pcl::PCLPointCloud2 message.
void pcl::getEulerAngles (const Eigen::Affine3f &t, float &roll, float &pitch, float &yaw)
 Extract the Euler angles (XYZ-convention) from the given transformation.
int pcl::getFieldIndex (const pcl::PCLPointCloud2 &cloud, const std::string &field_name)
 Get the index of a specified field (i.e., dimension/channel)
template<typename PointT >
int pcl::getFieldIndex (const pcl::PointCloud< PointT > &cloud, const std::string &field_name, std::vector< pcl::PCLPointField > &fields)
 Get the index of a specified field (i.e., dimension/channel)
template<typename PointT >
int pcl::getFieldIndex (const std::string &field_name, std::vector< pcl::PCLPointField > &fields)
 Get the index of a specified field (i.e., dimension/channel)
template<typename PointT >
void pcl::getFields (const pcl::PointCloud< PointT > &cloud, std::vector< pcl::PCLPointField > &fields)
 Get the list of available fields (i.e., dimension/channel)
template<typename PointT >
void pcl::getFields (std::vector< pcl::PCLPointField > &fields)
 Get the list of available fields (i.e., dimension/channel)
int pcl::getFieldSize (const int datatype)
 Obtains the size of a specific field data type in bytes.
template<typename PointT >
std::string pcl::getFieldsList (const pcl::PointCloud< PointT > &cloud)
 Get the list of all fields available in a given cloud.
std::string pcl::getFieldsList (const pcl::PCLPointCloud2 &cloud)
 Get the available point cloud fields as a space separated string.
int pcl::getFieldType (const int size, char type)
 Obtains the type of the PCLPointField from a specific size and type.
char pcl::getFieldType (const int type)
 Obtains the type of the PCLPointField from a specific PCLPointField as a char.
template<typename PointT >
void pcl::getMaxDistance (const pcl::PointCloud< PointT > &cloud, const Eigen::Vector4f &pivot_pt, Eigen::Vector4f &max_pt)
 Get the point at maximum distance from a given point and a given pointcloud.
template<typename PointT >
void pcl::getMaxDistance (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, const Eigen::Vector4f &pivot_pt, Eigen::Vector4f &max_pt)
 Get the point at maximum distance from a given point and a given pointcloud.
template<typename PointT >
double pcl::getMaxSegment (const pcl::PointCloud< PointT > &cloud, PointT &pmin, PointT &pmax)
 Obtain the maximum segment in a given set of points, and return the minimum and maximum points.
template<typename PointT >
double pcl::getMaxSegment (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, PointT &pmin, PointT &pmax)
 Obtain the maximum segment in a given set of points, and return the minimum and maximum points.
void pcl::getMeanStd (const std::vector< float > &values, double &mean, double &stddev)
 Compute both the mean and the standard deviation of an array of values.
PCL_EXPORTS void pcl::getMeanStdDev (const std::vector< float > &values, double &mean, double &stddev)
 Compute both the mean and the standard deviation of an array of values.
template<typename PointT >
void pcl::getMinMax (const PointT &histogram, int len, float &min_p, float &max_p)
 Get the minimum and maximum values on a point histogram.
PCL_EXPORTS void pcl::getMinMax (const pcl::PCLPointCloud2 &cloud, int idx, const std::string &field_name, float &min_p, float &max_p)
 Get the minimum and maximum values on a point histogram.
template<typename PointT >
void pcl::getMinMax3D (const pcl::PointCloud< PointT > &cloud, PointT &min_pt, PointT &max_pt)
 Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud.
template<typename PointT >
void pcl::getMinMax3D (const pcl::PointCloud< PointT > &cloud, Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt)
 Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud.
template<typename PointT >
void pcl::getMinMax3D (const pcl::PointCloud< PointT > &cloud, const std::vector< int > &indices, Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt)
 Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud.
template<typename PointT >
void pcl::getMinMax3D (const pcl::PointCloud< PointT > &cloud, const pcl::PointIndices &indices, Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt)
 Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud.
PCL_EXPORTS bool pcl::getPointCloudAsEigen (const pcl::PCLPointCloud2 &in, Eigen::MatrixXf &out)
 Copy the XYZ dimensions of a pcl::PCLPointCloud2 into Eigen format.
template<typename PointT >
void pcl::getPointsInBox (const pcl::PointCloud< PointT > &cloud, Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt, std::vector< int > &indices)
 Get a set of points residing in a box given its bounds.
template<typename Scalar >
void pcl::getTransformation (Scalar x, Scalar y, Scalar z, Scalar roll, Scalar pitch, Scalar yaw, Eigen::Transform< Scalar, 3, Eigen::Affine > &t)
 Create a transformation from the given translation and Euler angles (XYZ-convention)
Eigen::Affine3f pcl::getTransformation (float x, float y, float z, float roll, float pitch, float yaw)
 Create a transformation from the given translation and Euler angles (XYZ-convention)
void pcl::getTransformationFromTwoUnitVectors (const Eigen::Vector3f &y_direction, const Eigen::Vector3f &z_axis, Eigen::Affine3f &transformation)
 Get the unique 3D rotation that will rotate z_axis into (0,0,1) and y_direction into a vector with x=0 (or into (0,1,0) should y_direction be orthogonal to z_axis)
Eigen::Affine3f pcl::getTransformationFromTwoUnitVectors (const Eigen::Vector3f &y_direction, const Eigen::Vector3f &z_axis)
 Get the unique 3D rotation that will rotate z_axis into (0,0,1) and y_direction into a vector with x=0 (or into (0,1,0) should y_direction be orthogonal to z_axis)
void pcl::getTransformationFromTwoUnitVectorsAndOrigin (const Eigen::Vector3f &y_direction, const Eigen::Vector3f &z_axis, const Eigen::Vector3f &origin, Eigen::Affine3f &transformation)
 Get the transformation that will translate orign to (0,0,0) and rotate z_axis into (0,0,1) and y_direction into a vector with x=0 (or into (0,1,0) should y_direction be orthogonal to z_axis)
void pcl::getTransFromUnitVectorsXY (const Eigen::Vector3f &x_axis, const Eigen::Vector3f &y_direction, Eigen::Affine3f &transformation)
 Get the unique 3D rotation that will rotate x_axis into (1,0,0) and y_direction into a vector with z=0 (or into (0,1,0) should y_direction be orthogonal to z_axis)
Eigen::Affine3f pcl::getTransFromUnitVectorsXY (const Eigen::Vector3f &x_axis, const Eigen::Vector3f &y_direction)
 Get the unique 3D rotation that will rotate x_axis into (1,0,0) and y_direction into a vector with z=0 (or into (0,1,0) should y_direction be orthogonal to z_axis)
void pcl::getTransFromUnitVectorsZY (const Eigen::Vector3f &z_axis, const Eigen::Vector3f &y_direction, Eigen::Affine3f &transformation)
 Get the unique 3D rotation that will rotate z_axis into (0,0,1) and y_direction into a vector with x=0 (or into (0,1,0) should y_direction be orthogonal to z_axis)
Eigen::Affine3f pcl::getTransFromUnitVectorsZY (const Eigen::Vector3f &z_axis, const Eigen::Vector3f &y_direction)
 Get the unique 3D rotation that will rotate z_axis into (0,0,1) and y_direction into a vector with x=0 (or into (0,1,0) should y_direction be orthogonal to z_axis)
void pcl::getTranslationAndEulerAngles (const Eigen::Affine3f &t, float &x, float &y, float &z, float &roll, float &pitch, float &yaw)
template<typename FloatVectorT >
float pcl::HIK_Norm (FloatVectorT A, FloatVectorT B, int dim)
 Compute the HIK norm of the vector between two points.
template<typename Matrix >
Matrix::Scalar pcl::invert2x2 (const Matrix &matrix, Matrix &inverse)
 Calculate the inverse of a 2x2 matrix.
template<typename Matrix >
Matrix::Scalar pcl::invert3x3Matrix (const Matrix &matrix, Matrix &inverse)
 Calculate the inverse of a general 3x3 matrix.
template<typename Matrix >
Matrix::Scalar pcl::invert3x3SymMatrix (const Matrix &matrix, Matrix &inverse)
 Calculate the inverse of a 3x3 symmetric matrix.
bool pcl::isBetterCorrespondence (const Correspondence &pc1, const Correspondence &pc2)
 Comparator to enable us to sort a vector of PointCorrespondences according to their scores using std::sort (begin(), end(), isBetterCorrespondence);.
template<typename FloatVectorT >
float pcl::JM_Norm (FloatVectorT A, FloatVectorT B, int dim)
 Compute the JM norm of the vector between two points.
template<typename FloatVectorT >
float pcl::K_Norm (FloatVectorT A, FloatVectorT B, int dim, float P1, float P2)
 Compute the K norm of the vector between two points.
template<typename FloatVectorT >
float pcl::KL_Norm (FloatVectorT A, FloatVectorT B, int dim)
 Compute the KL between two discrete probability density functions.
template<typename FloatVectorT >
float pcl::L1_Norm (FloatVectorT A, FloatVectorT B, int dim)
 Compute the L1 norm of the vector between two points.
template<typename FloatVectorT >
float pcl::L2_Norm (FloatVectorT A, FloatVectorT B, int dim)
 Compute the L2 norm of the vector between two points.
template<typename FloatVectorT >
float pcl::L2_Norm_SQR (FloatVectorT A, FloatVectorT B, int dim)
 Compute the squared L2 norm of the vector between two points.
PCL_EXPORTS void pcl::lineToLineSegment (const Eigen::VectorXf &line_a, const Eigen::VectorXf &line_b, Eigen::Vector4f &pt1_seg, Eigen::Vector4f &pt2_seg)
 Get the shortest 3D segment between two 3D lines.
PCL_EXPORTS bool pcl::lineWithLineIntersection (const Eigen::VectorXf &line_a, const Eigen::VectorXf &line_b, Eigen::Vector4f &point, double sqr_eps=1e-4)
 Get the intersection of a two 3D lines in space as a 3D point.
PCL_EXPORTS bool pcl::lineWithLineIntersection (const pcl::ModelCoefficients &line_a, const pcl::ModelCoefficients &line_b, Eigen::Vector4f &point, double sqr_eps=1e-4)
 Get the intersection of a two 3D lines in space as a 3D point.
template<typename FloatVectorT >
float pcl::Linf_Norm (FloatVectorT A, FloatVectorT B, int dim)
 Compute the L-infinity norm of the vector between two points.
template<typename Derived >
void pcl::loadBinary (Eigen::MatrixBase< Derived > const &matrix, std::istream &file)
 Read a matrix from an input stream.
float pcl::normAngle (float alpha)
 Normalize an angle to (-PI, PI].
template<typename FloatVectorT >
float pcl::PF_Norm (FloatVectorT A, FloatVectorT B, int dim, float P1, float P2)
 Compute the PF norm of the vector between two points.
float pcl::rad2deg (float alpha)
 Convert an angle from radians to degrees.
double pcl::rad2deg (double alpha)
 Convert an angle from radians to degrees.
template<typename Derived >
void pcl::saveBinary (const Eigen::MatrixBase< Derived > &matrix, std::ostream &file)
 Write a matrix to an output stream.
template<typename FloatVectorT >
float pcl::selectNorm (FloatVectorT A, FloatVectorT B, int dim, NormType norm_type)
 Method that calculates any norm type available, based on the norm_type variable.
double pcl::sqrPointToLineDistance (const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir)
 Get the square distance from a point to a line (represented by a point and a direction)
double pcl::sqrPointToLineDistance (const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir, const double sqr_length)
 Get the square distance from a point to a line (represented by a point and a direction)
template<typename FloatVectorT >
float pcl::Sublinear_Norm (FloatVectorT A, FloatVectorT B, int dim)
 Compute the sublinear norm of the vector between two points.
template<std::size_t N>
void pcl::io::swapByte (char *bytes)
 swap bytes order of a char array of length N
template<typename PointT , typename Scalar >
PointT pcl::transformPoint (const PointT &point, const Eigen::Transform< Scalar, 3, Eigen::Affine > &transform)
 Transform a point with members x,y,z.
template<typename PointT , typename Scalar >
void pcl::transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Transform< Scalar, 3, Eigen::Affine > &transform)
 Apply an affine transform defined by an Eigen Transform.
template<typename PointT , typename Scalar >
void pcl::transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Transform< Scalar, 3, Eigen::Affine > &transform)
 Apply an affine transform defined by an Eigen Transform.
template<typename PointT , typename Scalar >
void pcl::transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, const pcl::PointIndices &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Transform< Scalar, 3, Eigen::Affine > &transform)
 Apply an affine transform defined by an Eigen Transform.
template<typename PointT , typename Scalar >
void pcl::transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 4, 4 > &transform)
 Apply a rigid transform defined by a 4x4 matrix.
template<typename PointT , typename Scalar >
void pcl::transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 4, 4 > &transform)
 Apply a rigid transform defined by a 4x4 matrix.
template<typename PointT , typename Scalar >
void pcl::transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, const pcl::PointIndices &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 4, 4 > &transform)
 Apply a rigid transform defined by a 4x4 matrix.
template<typename PointT , typename Scalar >
void pcl::transformPointCloud (const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 3, 1 > &offset, const Eigen::Quaternion< Scalar > &rotation)
 Apply a rigid transform defined by a 3D offset and a quaternion.
template<typename PointT , typename Scalar >
void pcl::transformPointCloudWithNormals (const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 4, 4 > &transform)
 Transform a point cloud and rotate its normals using an Eigen transform.
template<typename PointT , typename Scalar >
void pcl::transformPointCloudWithNormals (const pcl::PointCloud< PointT > &cloud_in, const std::vector< int > &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 4, 4 > &transform)
 Transform a point cloud and rotate its normals using an Eigen transform.
template<typename PointT , typename Scalar >
void pcl::transformPointCloudWithNormals (const pcl::PointCloud< PointT > &cloud_in, const pcl::PointIndices &indices, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 4, 4 > &transform)
 Transform a point cloud and rotate its normals using an Eigen transform.
template<typename PointT , typename Scalar >
void pcl::transformPointCloudWithNormals (const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 3, 1 > &offset, const Eigen::Quaternion< Scalar > &rotation)
 Transform a point cloud and rotate its normals using an Eigen transform.

Typedef Documentation

typedef std::bitset<32> pcl::BorderTraits

Data type to store extended information about a transition from foreground to backgroundSpecification of the fields for BorderDescription::traits.

Definition at line 263 of file common/include/pcl/point_types.h.


Enumeration Type Documentation

Specification of the fields for BorderDescription::traits.

Enumerator:
BORDER_TRAIT__OBSTACLE_BORDER 
BORDER_TRAIT__SHADOW_BORDER 
BORDER_TRAIT__VEIL_POINT 
BORDER_TRAIT__SHADOW_BORDER_TOP 
BORDER_TRAIT__SHADOW_BORDER_RIGHT 
BORDER_TRAIT__SHADOW_BORDER_BOTTOM 
BORDER_TRAIT__SHADOW_BORDER_LEFT 
BORDER_TRAIT__OBSTACLE_BORDER_TOP 
BORDER_TRAIT__OBSTACLE_BORDER_RIGHT 
BORDER_TRAIT__OBSTACLE_BORDER_BOTTOM 
BORDER_TRAIT__OBSTACLE_BORDER_LEFT 
BORDER_TRAIT__VEIL_POINT_TOP 
BORDER_TRAIT__VEIL_POINT_RIGHT 
BORDER_TRAIT__VEIL_POINT_BOTTOM 
BORDER_TRAIT__VEIL_POINT_LEFT 

Definition at line 273 of file common/include/pcl/point_types.h.

Enum that defines all the types of norms available.

Note:
Any new norm type should have its own enum value and its own case in the selectNorm () method
Enumerator:
L1 
L2_SQR 
L2 
LINF 
JM 
B 
SUBLINEAR 
CS 
DIV 
PF 
K 
KL 
HIK 

Definition at line 55 of file norms.h.


Function Documentation

template<typename FloatVectorT >
float pcl::B_Norm ( FloatVectorT  A,
FloatVectorT  B,
int  dim 
) [inline]

Compute the B norm of the vector between two points.

Parameters:
Athe first point
Bthe second point
dimthe number of dimensions in A and B (dimensions must match)
Note:
FloatVectorT is any type of vector with its values accessible via [ ]

Definition at line 139 of file norms.hpp.

template<typename PointT >
float pcl::calculatePolygonArea ( const pcl::PointCloud< PointT > &  polygon) [inline]

Calculate the area of a polygon given a point cloud that defines the polygon.

Parameters:
polygonpoint cloud that contains those vertices that comprises the polygon. Vertices are stored in counterclockwise.
Returns:
the polygon area

Definition at line 391 of file common/include/pcl/common/impl/common.hpp.

template<typename PointT , typename Scalar >
unsigned int pcl::compute3DCentroid ( ConstCloudIterator< PointT > &  cloud_iterator,
Eigen::Matrix< Scalar, 4, 1 > &  centroid 
) [inline]

Compute the 3D (X-Y-Z) centroid of a set of points and return it as a 3D vector.

Parameters:
[in]cloud_iteratoran iterator over the input point cloud
[out]centroidthe output centroid
Returns:
number of valid point used to determine the centroid. In case of dense point clouds, this is the same as the size of input cloud.
Note:
if return value is 0, the centroid is not changed, thus not valid.

Definition at line 50 of file centroid.hpp.

template<typename PointT , typename Scalar >
unsigned int pcl::compute3DCentroid ( const pcl::PointCloud< PointT > &  cloud,
Eigen::Matrix< Scalar, 4, 1 > &  centroid 
) [inline]

Compute the 3D (X-Y-Z) centroid of a set of points and return it as a 3D vector.

Parameters:
[in]cloudthe input point cloud
[out]centroidthe output centroid
Returns:
number of valid point used to determine the centroid. In case of dense point clouds, this is the same as the size of input cloud.
Note:
if return value is 0, the centroid is not changed, thus not valid.

Definition at line 80 of file centroid.hpp.

template<typename PointT , typename Scalar >
unsigned int pcl::compute3DCentroid ( const pcl::PointCloud< PointT > &  cloud,
const std::vector< int > &  indices,
Eigen::Matrix< Scalar, 4, 1 > &  centroid 
) [inline]

Compute the 3D (X-Y-Z) centroid of a set of points using their indices and return it as a 3D vector.

Parameters:
[in]cloudthe input point cloud
[in]indicesthe point cloud indices that need to be used
[out]centroidthe output centroid
Returns:
number of valid point used to determine the centroid. In case of dense point clouds, this is the same as the size of input cloud.
Note:
if return value is 0, the centroid is not changed, thus not valid.

Definition at line 127 of file centroid.hpp.

template<typename PointT , typename Scalar >
unsigned int pcl::compute3DCentroid ( const pcl::PointCloud< PointT > &  cloud,
const pcl::PointIndices indices,
Eigen::Matrix< Scalar, 4, 1 > &  centroid 
) [inline]

Compute the 3D (X-Y-Z) centroid of a set of points using their indices and return it as a 3D vector.

Parameters:
[in]cloudthe input point cloud
[in]indicesthe point cloud indices that need to be used
[out]centroidthe output centroid
Returns:
number of valid point used to determine the centroid. In case of dense point clouds, this is the same as the size of input cloud.
Note:
if return value is 0, the centroid is not changed, thus not valid.

Definition at line 172 of file centroid.hpp.

template<typename Matrix , typename Vector >
void pcl::computeCorrespondingEigenVector ( const Matrix &  mat,
const typename Matrix::Scalar eigenvalue,
Vector &  eigenvector 
) [inline]

determines the corresponding eigenvector to the given eigenvalue of the symmetric positive semi definite input matrix

Parameters:
[in]matsymmetric positive semi definite input matrix
[in]eigenvaluethe eigenvalue which corresponding eigenvector is to be computed
[out]eigenvectorthe corresponding eigenvector for the input eigenvalue

Definition at line 266 of file common/include/pcl/common/eigen.h.

template<typename PointT , typename Scalar >
unsigned pcl::computeCovarianceMatrix ( const pcl::PointCloud< PointT > &  cloud,
const Eigen::Matrix< Scalar, 4, 1 > &  centroid,
Eigen::Matrix< Scalar, 3, 3 > &  covariance_matrix 
) [inline]

Compute the 3x3 covariance matrix of a given set of points. The result is returned as a Eigen::Matrix3f. Note: the covariance matrix is not normalized with the number of points. For a normalized covariance, please use computeNormalizedCovarianceMatrix.

Parameters:
[in]cloudthe input point cloud
[in]centroidthe centroid of the set of points in the cloud
[out]covariance_matrixthe resultant 3x3 covariance matrix
Returns:
number of valid point used to determine the covariance matrix. In case of dense point clouds, this is the same as the size of input cloud.
Note:
if return value is 0, the covariance matrix is not changed, thus not valid.

Definition at line 181 of file centroid.hpp.

template<typename PointT , typename Scalar >
unsigned int pcl::computeCovarianceMatrix ( const pcl::PointCloud< PointT > &  cloud,
const std::vector< int > &  indices,
const Eigen::Matrix< Scalar, 4, 1 > &  centroid,
Eigen::Matrix< Scalar, 3, 3 > &  covariance_matrix 
) [inline]

Compute the 3x3 covariance matrix of a given set of points using their indices. The result is returned as a Eigen::Matrix3f. Note: the covariance matrix is not normalized with the number of points. For a normalized covariance, please use computeNormalizedCovarianceMatrix.

Parameters:
[in]cloudthe input point cloud
[in]indicesthe point cloud indices that need to be used
[in]centroidthe centroid of the set of points in the cloud
[out]covariance_matrixthe resultant 3x3 covariance matrix
Returns:
number of valid point used to determine the covariance matrix. In case of dense point clouds, this is the same as the size of input cloud.

Definition at line 264 of file centroid.hpp.

template<typename PointT , typename Scalar >
unsigned int pcl::computeCovarianceMatrix ( const pcl::PointCloud< PointT > &  cloud,
const pcl::PointIndices indices,
const Eigen::Matrix< Scalar, 4, 1 > &  centroid,
Eigen::Matrix< Scalar, 3, 3 > &  covariance_matrix 
) [inline]

Compute the 3x3 covariance matrix of a given set of points using their indices. The result is returned as a Eigen::Matrix3f. Note: the covariance matrix is not normalized with the number of points. For a normalized covariance, please use computeNormalizedCovarianceMatrix.

Parameters:
[in]cloudthe input point cloud
[in]indicesthe point cloud indices that need to be used
[in]centroidthe centroid of the set of points in the cloud
[out]covariance_matrixthe resultant 3x3 covariance matrix
Returns:
number of valid point used to determine the covariance matrix. In case of dense point clouds, this is the same as the size of input cloud.

Definition at line 335 of file centroid.hpp.

template<typename PointT , typename Scalar >
unsigned int pcl::computeCovarianceMatrix ( const pcl::PointCloud< PointT > &  cloud,
Eigen::Matrix< Scalar, 3, 3 > &  covariance_matrix 
) [inline]

Compute the normalized 3x3 covariance matrix for a already demeaned point cloud. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function.

Note:
This method is theoretically exact. However using float for internal calculations reduces the accuracy but increases the efficiency.
Parameters:
[in]cloudthe input point cloud
[out]covariance_matrixthe resultant 3x3 covariance matrix
Returns:
number of valid point used to determine the covariance matrix. In case of dense point clouds, this is the same as the size of input cloud.

Definition at line 373 of file centroid.hpp.

template<typename PointT , typename Scalar >
unsigned int pcl::computeCovarianceMatrix ( const pcl::PointCloud< PointT > &  cloud,
const std::vector< int > &  indices,
Eigen::Matrix< Scalar, 3, 3 > &  covariance_matrix 
) [inline]

Compute the normalized 3x3 covariance matrix for a already demeaned point cloud. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function.

Note:
This method is theoretically exact. However using float for internal calculations reduces the accuracy but increases the efficiency.
Parameters:
[in]cloudthe input point cloud
[in]indicessubset of points given by their indices
[out]covariance_matrixthe resultant 3x3 covariance matrix
Returns:
number of valid point used to determine the covariance matrix. In case of dense point clouds, this is the same as the size of input cloud.

Definition at line 427 of file centroid.hpp.

template<typename PointT , typename Scalar >
unsigned int pcl::computeCovarianceMatrix ( const pcl::PointCloud< PointT > &  cloud,
const pcl::PointIndices indices,
Eigen::Matrix< Scalar, 3, 3 > &  covariance_matrix 
) [inline]

Compute the normalized 3x3 covariance matrix for a already demeaned point cloud. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function.

Note:
This method is theoretically exact. However using float for internal calculations reduces the accuracy but increases the efficiency.
Parameters:
[in]cloudthe input point cloud
[in]indicessubset of points given by their indices
[out]covariance_matrixthe resultant 3x3 covariance matrix
Returns:
number of valid point used to determine the covariance matrix. In case of dense point clouds, this is the same as the size of input cloud.

Definition at line 481 of file centroid.hpp.

template<typename PointT , typename Scalar >
unsigned int pcl::computeCovarianceMatrixNormalized ( const pcl::PointCloud< PointT > &  cloud,
const Eigen::Matrix< Scalar, 4, 1 > &  centroid,
Eigen::Matrix< Scalar, 3, 3 > &  covariance_matrix 
) [inline]

Compute normalized the 3x3 covariance matrix of a given set of points. The result is returned as a Eigen::Matrix3f. Normalized means that every entry has been divided by the number of points in the point cloud. For small number of points, or if you want explicitely the sample-variance, use computeCovarianceMatrix and scale the covariance matrix with 1 / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by the computeCovarianceMatrix function.

Parameters:
[in]cloudthe input point cloud
[in]centroidthe centroid of the set of points in the cloud
[out]covariance_matrixthe resultant 3x3 covariance matrix
Returns:
number of valid point used to determine the covariance matrix. In case of dense point clouds, this is the same as the size of input cloud.

Definition at line 252 of file centroid.hpp.

template<typename PointT , typename Scalar >
unsigned int pcl::computeCovarianceMatrixNormalized ( const pcl::PointCloud< PointT > &  cloud,
const std::vector< int > &  indices,
const Eigen::Matrix< Scalar, 4, 1 > &  centroid,
Eigen::Matrix< Scalar, 3, 3 > &  covariance_matrix 
) [inline]

Compute the normalized 3x3 covariance matrix of a given set of points using their indices. The result is returned as a Eigen::Matrix3f. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, use computeCovarianceMatrix and scale the covariance matrix with 1 / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by the computeCovarianceMatrix function.

Parameters:
[in]cloudthe input point cloud
[in]indicesthe point cloud indices that need to be used
[in]centroidthe centroid of the set of points in the cloud
[out]covariance_matrixthe resultant 3x3 covariance matrix
Returns:
number of valid point used to determine the covariance matrix. In case of dense point clouds, this is the same as the size of input cloud.

Definition at line 345 of file centroid.hpp.

template<typename PointT , typename Scalar >
unsigned int pcl::computeCovarianceMatrixNormalized ( const pcl::PointCloud< PointT > &  cloud,
const pcl::PointIndices indices,
const Eigen::Matrix< Scalar, 4, 1 > &  centroid,
Eigen::Matrix< Scalar, 3, 3 > &  covariance_matrix 
) [inline]

Compute the normalized 3x3 covariance matrix of a given set of points using their indices. The result is returned as a Eigen::Matrix3f. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, use computeCovarianceMatrix and scale the covariance matrix with 1 / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by the computeCovarianceMatrix function.

Parameters:
[in]cloudthe input point cloud
[in]indicesthe point cloud indices that need to be used
[in]centroidthe centroid of the set of points in the cloud
[out]covariance_matrixthe resultant 3x3 covariance matrix
Returns:
number of valid point used to determine the covariance matrix. In case of dense point clouds, this is the same as the size of input cloud.

Definition at line 359 of file centroid.hpp.

template<typename PointT , typename Scalar >
unsigned int pcl::computeMeanAndCovarianceMatrix ( const pcl::PointCloud< PointT > &  cloud,
Eigen::Matrix< Scalar, 3, 3 > &  covariance_matrix,
Eigen::Matrix< Scalar, 4, 1 > &  centroid 
) [inline]

Compute the normalized 3x3 covariance matrix and the centroid of a given set of points in a single loop. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function.

Note:
This method is theoretically exact. However using float for internal calculations reduces the accuracy but increases the efficiency.
Parameters:
[in]cloudthe input point cloud
[out]covariance_matrixthe resultant 3x3 covariance matrix
[out]centroidthe centroid of the set of points in the cloud
Returns:
number of valid point used to determine the covariance matrix. In case of dense point clouds, this is the same as the size of input cloud.

Definition at line 490 of file centroid.hpp.

template<typename PointT , typename Scalar >
unsigned int pcl::computeMeanAndCovarianceMatrix ( const pcl::PointCloud< PointT > &  cloud,
const std::vector< int > &  indices,
Eigen::Matrix< Scalar, 3, 3 > &  covariance_matrix,
Eigen::Matrix< Scalar, 4, 1 > &  centroid 
) [inline]

Compute the normalized 3x3 covariance matrix and the centroid of a given set of points in a single loop. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function.

Note:
This method is theoretically exact. However using float for internal calculations reduces the accuracy but increases the efficiency.
Parameters:
[in]cloudthe input point cloud
[in]indicessubset of points given by their indices
[out]covariance_matrixthe resultant 3x3 covariance matrix
[out]centroidthe centroid of the set of points in the cloud
Returns:
number of valid point used to determine the covariance matrix. In case of dense point clouds, this is the same as the size of input cloud.

Definition at line 555 of file centroid.hpp.

template<typename PointT , typename Scalar >
unsigned int pcl::computeMeanAndCovarianceMatrix ( const pcl::PointCloud< PointT > &  cloud,
const pcl::PointIndices indices,
Eigen::Matrix< Scalar, 3, 3 > &  covariance_matrix,
Eigen::Matrix< Scalar, 4, 1 > &  centroid 
) [inline]

Compute the normalized 3x3 covariance matrix and the centroid of a given set of points in a single loop. Normalized means that every entry has been divided by the number of entries in indices. For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function.

Note:
This method is theoretically exact. However using float for internal calculations reduces the accuracy but increases the efficiency.
Parameters:
[in]cloudthe input point cloud
[in]indicessubset of points given by their indices
[out]centroidthe centroid of the set of points in the cloud
[out]covariance_matrixthe resultant 3x3 covariance matrix
Returns:
number of valid point used to determine the covariance matrix. In case of dense point clouds, this is the same as the size of input cloud.

Definition at line 622 of file centroid.hpp.

template<typename PointT , typename Scalar >
void pcl::computeNDCentroid ( const pcl::PointCloud< PointT > &  cloud,
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > &  centroid 
) [inline]

General, all purpose nD centroid estimation for a set of points using their indices.

Parameters:
cloudthe input point cloud
centroidthe output centroid

Definition at line 810 of file centroid.hpp.

template<typename PointT , typename Scalar >
void pcl::computeNDCentroid ( const pcl::PointCloud< PointT > &  cloud,
const std::vector< int > &  indices,
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > &  centroid 
) [inline]

General, all purpose nD centroid estimation for a set of points using their indices.

Parameters:
cloudthe input point cloud
indicesthe point cloud indices that need to be used
centroidthe output centroid

Definition at line 832 of file centroid.hpp.

template<typename PointT , typename Scalar >
void pcl::computeNDCentroid ( const pcl::PointCloud< PointT > &  cloud,
const pcl::PointIndices indices,
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > &  centroid 
) [inline]

General, all purpose nD centroid estimation for a set of points using their indices.

Parameters:
cloudthe input point cloud
indicesthe point cloud indices that need to be used
centroidthe output centroid

Definition at line 855 of file centroid.hpp.

template<typename PointIn1T , typename PointIn2T , typename PointOutT >
void pcl::concatenateFields ( const pcl::PointCloud< PointIn1T > &  cloud1_in,
const pcl::PointCloud< PointIn2T > &  cloud2_in,
pcl::PointCloud< PointOutT > &  cloud_out 
)

Concatenate two datasets representing different fields.

Note:
If the input datasets have overlapping fields (i.e., both contain the same fields), then the data in the second cloud (cloud2_in) will overwrite the data in the first (cloud1_in).
Parameters:
[in]cloud1_inthe first input dataset
[in]cloud2_inthe second input dataset (overwrites the fields of the first dataset for those that are shared)
[out]cloud_outthe resultant output dataset created by the concatenation of all the fields in the input datasets

Definition at line 636 of file common/include/pcl/common/impl/io.hpp.

bool pcl::concatenateFields ( const pcl::PCLPointCloud2 cloud1_in,
const pcl::PCLPointCloud2 cloud2_in,
pcl::PCLPointCloud2 cloud_out 
)

Concatenate two datasets representing different fields.

Note:
If the input datasets have overlapping fields (i.e., both contain the same fields), then the data in the second cloud (cloud2_in) will overwrite the data in the first (cloud1_in).
Parameters:
[in]cloud1_inthe first input dataset
[in]cloud2_inthe second input dataset (overwrites the fields of the first dataset for those that are shared)
[out]cloud_outthe output dataset created by concatenating all the fields in the input datasets

Definition at line 70 of file common/src/io.cpp.

bool pcl::concatenatePointCloud ( const pcl::PCLPointCloud2 cloud1,
const pcl::PCLPointCloud2 cloud2,
pcl::PCLPointCloud2 cloud_out 
)

Concatenate two pcl::PCLPointCloud2.

Parameters:
[in]cloud1the first input point cloud dataset
[in]cloud2the second input point cloud dataset
[out]cloud_outthe resultant output point cloud dataset
Returns:
true if successful, false if failed (e.g., name/number of fields differs)

Definition at line 219 of file common/src/io.cpp.

void pcl::copyPointCloud ( const pcl::PCLPointCloud2 cloud_in,
const std::vector< int > &  indices,
pcl::PCLPointCloud2 cloud_out 
)

Extract the indices of a given point cloud as a new point cloud.

Parameters:
[in]cloud_inthe input point cloud dataset
[in]indicesthe vector of indices representing the points to be copied from cloud_in
[out]cloud_outthe resultant output point cloud dataset
Note:
Assumes unique indices.

Definition at line 417 of file common/src/io.cpp.

void pcl::copyPointCloud ( const pcl::PCLPointCloud2 cloud_in,
const std::vector< int, Eigen::aligned_allocator< int > > &  indices,
pcl::PCLPointCloud2 cloud_out 
)

Extract the indices of a given point cloud as a new point cloud.

Parameters:
[in]cloud_inthe input point cloud dataset
[in]indicesthe vector of indices representing the points to be copied from cloud_in
[out]cloud_outthe resultant output point cloud dataset
Note:
Assumes unique indices.

Definition at line 440 of file common/src/io.cpp.

void pcl::copyPointCloud ( const pcl::PCLPointCloud2 cloud_in,
pcl::PCLPointCloud2 cloud_out 
)

Copy fields and point cloud data from cloud_in to cloud_out.

Parameters:
[in]cloud_inthe input point cloud dataset
[out]cloud_outthe resultant output point cloud dataset

Definition at line 463 of file common/src/io.cpp.

template<typename PointT >
void pcl::copyPointCloud ( const pcl::PointCloud< PointT > &  cloud_in,
const std::vector< int > &  indices,
pcl::PointCloud< PointT > &  cloud_out 
)

Extract the indices of a given point cloud as a new point cloud.

Parameters:
[in]cloud_inthe input point cloud dataset
[in]indicesthe vector of indices representing the points to be copied from cloud_in
[out]cloud_outthe resultant output point cloud dataset
Note:
Assumes unique indices.

Definition at line 181 of file common/include/pcl/common/impl/io.hpp.

template<typename PointT >
void pcl::copyPointCloud ( const pcl::PointCloud< PointT > &  cloud_in,
const std::vector< int, Eigen::aligned_allocator< int > > &  indices,
pcl::PointCloud< PointT > &  cloud_out 
)

Extract the indices of a given point cloud as a new point cloud.

Parameters:
[in]cloud_inthe input point cloud dataset
[in]indicesthe vector of indices representing the points to be copied from cloud_in
[out]cloud_outthe resultant output point cloud dataset
Note:
Assumes unique indices.

Definition at line 208 of file common/include/pcl/common/impl/io.hpp.

template<typename PointT >
void pcl::copyPointCloud ( const pcl::PointCloud< PointT > &  cloud_in,
const PointIndices &  indices,
pcl::PointCloud< PointT > &  cloud_out 
)

Extract the indices of a given point cloud as a new point cloud.

Parameters:
[in]cloud_inthe input point cloud dataset
[in]indicesthe PointIndices structure representing the points to be copied from cloud_in
[out]cloud_outthe resultant output point cloud dataset
Note:
Assumes unique indices.

Definition at line 385 of file common/include/pcl/common/impl/io.hpp.

template<typename PointT >
void pcl::copyPointCloud ( const pcl::PointCloud< PointT > &  cloud_in,
const std::vector< pcl::PointIndices > &  indices,
pcl::PointCloud< PointT > &  cloud_out 
)

Extract the indices of a given point cloud as a new point cloud.

Parameters:
[in]cloud_inthe input point cloud dataset
[in]indicesthe vector of indices representing the points to be copied from cloud_in
[out]cloud_outthe resultant output point cloud dataset
Note:
Assumes unique indices.

Definition at line 487 of file common/include/pcl/common/impl/io.hpp.

template<typename PointInT , typename PointOutT >
void pcl::copyPointCloud ( const pcl::PointCloud< PointInT > &  cloud_in,
pcl::PointCloud< PointOutT > &  cloud_out 
)

Copy all the fields from a given point cloud into a new point cloud.

Parameters:
[in]cloud_inthe input point cloud dataset
[out]cloud_outthe resultant output point cloud dataset

Definition at line 110 of file common/include/pcl/common/impl/io.hpp.

template<typename PointInT , typename PointOutT >
void pcl::copyPointCloud ( const pcl::PointCloud< PointInT > &  cloud_in,
const std::vector< int > &  indices,
pcl::PointCloud< PointOutT > &  cloud_out 
)

Extract the indices of a given point cloud as a new point cloud.

Parameters:
[in]cloud_inthe input point cloud dataset
[in]indicesthe vector of indices representing the points to be copied from cloud_in
[out]cloud_outthe resultant output point cloud dataset
Note:
Assumes unique indices.

Definition at line 235 of file common/include/pcl/common/impl/io.hpp.

template<typename PointInT , typename PointOutT >
void pcl::copyPointCloud ( const pcl::PointCloud< PointInT > &  cloud_in,
const std::vector< int, Eigen::aligned_allocator< int > > &  indices,
pcl::PointCloud< PointOutT > &  cloud_out 
)

Extract the indices of a given point cloud as a new point cloud.

Parameters:
[in]cloud_inthe input point cloud dataset
[in]indicesthe vector of indices representing the points to be copied from cloud_in
[out]cloud_outthe resultant output point cloud dataset
Note:
Assumes unique indices.

Definition at line 310 of file common/include/pcl/common/impl/io.hpp.

template<typename PointInT , typename PointOutT >
void pcl::copyPointCloud ( const pcl::PointCloud< PointInT > &  cloud_in,
const PointIndices &  indices,
pcl::PointCloud< PointOutT > &  cloud_out 
)

Extract the indices of a given point cloud as a new point cloud.

Parameters:
[in]cloud_inthe input point cloud dataset
[in]indicesthe PointIndices structure representing the points to be copied from cloud_in
[out]cloud_outthe resultant output point cloud dataset
Note:
Assumes unique indices.

Definition at line 412 of file common/include/pcl/common/impl/io.hpp.

template<typename PointInT , typename PointOutT >
void pcl::copyPointCloud ( const pcl::PointCloud< PointInT > &  cloud_in,
const std::vector< pcl::PointIndices > &  indices,
pcl::PointCloud< PointOutT > &  cloud_out 
)

Extract the indices of a given point cloud as a new point cloud.

Parameters:
[in]cloud_inthe input point cloud dataset
[in]indicesthe vector of indices representing the points to be copied from cloud_in
[out]cloud_outthe resultant output point cloud dataset
Note:
Assumes unique indices.

Definition at line 527 of file common/include/pcl/common/impl/io.hpp.

template<typename FloatVectorT >
float pcl::CS_Norm ( FloatVectorT  A,
FloatVectorT  B,
int  dim 
) [inline]

Compute the CS norm of the vector between two points.

Parameters:
Athe first point
Bthe second point
dimthe number of dimensions in A and B (dimensions must match)
Note:
FloatVectorT is any type of vector with its values accessible via [ ]

Definition at line 168 of file norms.hpp.

float pcl::deg2rad ( float  alpha) [inline]

Convert an angle from degrees to radians.

Parameters:
alphathe input angle (in degrees)

Definition at line 67 of file angles.hpp.

double pcl::deg2rad ( double  alpha) [inline]

Convert an angle from degrees to radians.

Parameters:
alphathe input angle (in degrees)

Definition at line 79 of file angles.hpp.

template<typename PointT , typename Scalar >
void pcl::demeanPointCloud ( ConstCloudIterator< PointT > &  cloud_iterator,
const Eigen::Matrix< Scalar, 4, 1 > &  centroid,
pcl::PointCloud< PointT > &  cloud_out,
int  npts = 0 
)

Subtract a centroid from a point cloud and return the de-meaned representation.

Parameters:
[in]cloud_iteratoran iterator over the input point cloud
[in]centroidthe centroid of the point cloud
[out]cloud_outthe resultant output point cloud
[in]nptsthe number of samples guaranteed to be left in the input cloud, accessible by the iterator. If not given, it will be calculated.

Definition at line 632 of file centroid.hpp.

template<typename PointT , typename Scalar >
void pcl::demeanPointCloud ( const pcl::PointCloud< PointT > &  cloud_in,
const Eigen::Matrix< Scalar, 4, 1 > &  centroid,
pcl::PointCloud< PointT > &  cloud_out 
)

Subtract a centroid from a point cloud and return the de-meaned representation.

Parameters:
[in]cloud_inthe input point cloud
[in]centroidthe centroid of the point cloud
[out]cloud_outthe resultant output point cloud

Definition at line 665 of file centroid.hpp.

template<typename PointT , typename Scalar >
void pcl::demeanPointCloud ( const pcl::PointCloud< PointT > &  cloud_in,
const std::vector< int > &  indices,
const Eigen::Matrix< Scalar, 4, 1 > &  centroid,
pcl::PointCloud< PointT > &  cloud_out 
)

Subtract a centroid from a point cloud and return the de-meaned representation.

Parameters:
[in]cloud_inthe input point cloud
[in]indicesthe set of point indices to use from the input point cloud
[out]centroidthe centroid of the point cloud
cloud_outthe resultant output point cloud

Definition at line 682 of file centroid.hpp.

template<typename PointT , typename Scalar >
void pcl::demeanPointCloud ( const pcl::PointCloud< PointT > &  cloud_in,
const pcl::PointIndices indices,
const Eigen::Matrix< Scalar, 4, 1 > &  centroid,
pcl::PointCloud< PointT > &  cloud_out 
)

Subtract a centroid from a point cloud and return the de-meaned representation.

Parameters:
[in]cloud_inthe input point cloud
[in]indicesthe set of point indices to use from the input point cloud
[out]centroidthe centroid of the point cloud
cloud_outthe resultant output point cloud

Definition at line 712 of file centroid.hpp.

template<typename PointT , typename Scalar >
void pcl::demeanPointCloud ( ConstCloudIterator< PointT > &  cloud_iterator,
const Eigen::Matrix< Scalar, 4, 1 > &  centroid,
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > &  cloud_out,
int  npts = 0 
)

Subtract a centroid from a point cloud and return the de-meaned representation as an Eigen matrix.

Parameters:
[in]cloud_iteratoran iterator over the input point cloud
[in]centroidthe centroid of the point cloud
[out]cloud_outthe resultant output XYZ0 dimensions of cloud_in as an Eigen matrix (4 rows, N pts columns)
[in]nptsthe number of samples guaranteed to be left in the input cloud, accessible by the iterator. If not given, it will be calculated.

Definition at line 722 of file centroid.hpp.

template<typename PointT , typename Scalar >
void pcl::demeanPointCloud ( const pcl::PointCloud< PointT > &  cloud_in,
const Eigen::Matrix< Scalar, 4, 1 > &  centroid,
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > &  cloud_out 
)

Subtract a centroid from a point cloud and return the de-meaned representation as an Eigen matrix.

Parameters:
[in]cloud_inthe input point cloud
[in]centroidthe centroid of the point cloud
[out]cloud_outthe resultant output XYZ0 dimensions of cloud_in as an Eigen matrix (4 rows, N pts columns)

Definition at line 753 of file centroid.hpp.

template<typename PointT , typename Scalar >
void pcl::demeanPointCloud ( const pcl::PointCloud< PointT > &  cloud_in,
const std::vector< int > &  indices,
const Eigen::Matrix< Scalar, 4, 1 > &  centroid,
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > &  cloud_out 
)

Subtract a centroid from a point cloud and return the de-meaned representation as an Eigen matrix.

Parameters:
[in]cloud_inthe input point cloud
[in]indicesthe set of point indices to use from the input point cloud
[in]centroidthe centroid of the point cloud
[out]cloud_outthe resultant output XYZ0 dimensions of cloud_in as an Eigen matrix (4 rows, N pts columns)

Definition at line 776 of file centroid.hpp.

template<typename PointT , typename Scalar >
void pcl::demeanPointCloud ( const pcl::PointCloud< PointT > &  cloud_in,
const pcl::PointIndices indices,
const Eigen::Matrix< Scalar, 4, 1 > &  centroid,
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > &  cloud_out 
)

Subtract a centroid from a point cloud and return the de-meaned representation as an Eigen matrix.

Parameters:
[in]cloud_inthe input point cloud
[in]indicesthe set of point indices to use from the input point cloud
[in]centroidthe centroid of the point cloud
[out]cloud_outthe resultant output XYZ0 dimensions of cloud_in as an Eigen matrix (4 rows, N pts columns)

Definition at line 800 of file centroid.hpp.

template<typename FloatVectorT >
float pcl::Div_Norm ( FloatVectorT  A,
FloatVectorT  B,
int  dim 
) [inline]

Compute the div norm of the vector between two points.

Parameters:
Athe first point
Bthe second point
dimthe number of dimensions in A and B (dimensions must match)
Note:
FloatVectorT is any type of vector with its values accessible via [ ]

Definition at line 182 of file norms.hpp.

template<typename Matrix , typename Vector >
void pcl::eigen22 ( const Matrix &  mat,
typename Matrix::Scalar eigenvalue,
Vector &  eigenvector 
) [inline]

determine the smallest eigenvalue and its corresponding eigenvector

Parameters:
[in]matinput matrix that needs to be symmetric and positive semi definite
[out]eigenvaluethe smallest eigenvalue of the input matrix
[out]eigenvectorthe corresponding eigenvector to the smallest eigenvalue of the input matrix

Definition at line 163 of file common/include/pcl/common/eigen.h.

template<typename Matrix , typename Vector >
void pcl::eigen22 ( const Matrix &  mat,
Matrix &  eigenvectors,
Vector &  eigenvalues 
) [inline]

determine the smallest eigenvalue and its corresponding eigenvector

Parameters:
[in]matinput matrix that needs to be symmetric and positive semi definite
[out]eigenvectorsthe corresponding eigenvector to the smallest eigenvalue of the input matrix
[out]eigenvaluesthe smallest eigenvalue of the input matrix

Definition at line 207 of file common/include/pcl/common/eigen.h.

template<typename Matrix , typename Vector >
void pcl::eigen33 ( const Matrix &  mat,
typename Matrix::Scalar eigenvalue,
Vector &  eigenvector 
) [inline]

determines the eigenvector and eigenvalue of the smallest eigenvalue of the symmetric positive semi definite input matrix

Parameters:
[in]matsymmetric positive semi definite input matrix
[out]eigenvaluesmallest eigenvalue of the input matrix
[out]eigenvectorthe corresponding eigenvector for the input eigenvalue
Note:
if the smallest eigenvalue is not unique, this function may return any eigenvector that is consistent to the eigenvalue.

Definition at line 304 of file common/include/pcl/common/eigen.h.

template<typename Matrix , typename Vector >
void pcl::eigen33 ( const Matrix &  mat,
Vector &  evals 
) [inline]

determines the eigenvalues of the symmetric positive semi definite input matrix

Parameters:
[in]matsymmetric positive semi definite input matrix
[out]evalsresulting eigenvalues in ascending order

Definition at line 345 of file common/include/pcl/common/eigen.h.

template<typename Matrix , typename Vector >
void pcl::eigen33 ( const Matrix &  mat,
Matrix &  evecs,
Vector &  evals 
) [inline]

determines the eigenvalues and corresponding eigenvectors of the symmetric positive semi definite input matrix

Parameters:
[in]matsymmetric positive semi definite input matrix
[out]evecsresulting eigenvalues in ascending order
[out]evalscorresponding eigenvectors in correct order according to eigenvalues

Definition at line 364 of file common/include/pcl/common/eigen.h.

double pcl::getAngle3D ( const Eigen::Vector4f &  v1,
const Eigen::Vector4f &  v2 
) [inline]

Compute the smallest angle between two vectors in the [ 0, PI ) interval in 3D.

Parameters:
v1the first 3D vector (represented as a Eigen::Vector4f)
v2the second 3D vector (represented as a Eigen::Vector4f)
Returns:
the angle between v1 and v2

Definition at line 46 of file common/include/pcl/common/impl/common.hpp.

template<typename PointT >
double pcl::getCircumcircleRadius ( const PointT pa,
const PointT pb,
const PointT pc 
) [inline]

Compute the radius of a circumscribed circle for a triangle formed of three points pa, pb, and pc.

Parameters:
pathe first point
pbthe second point
pcthe third point
Returns:
the radius of the circumscribed circle

Definition at line 360 of file common/include/pcl/common/impl/common.hpp.

bool pcl::getEigenAsPointCloud ( Eigen::MatrixXf &  in,
pcl::PCLPointCloud2 out 
)

Copy the XYZ dimensions from an Eigen MatrixXf into a pcl::PCLPointCloud2 message.

Parameters:
[in]inthe Eigen MatrixXf format containing XYZ0 / point
[out]outthe resultant point cloud message
Note:
the method assumes that the PCLPointCloud2 message already has the fields set up properly !

Definition at line 370 of file common/src/io.cpp.

void pcl::getEulerAngles ( const Eigen::Affine3f &  t,
float &  roll,
float &  pitch,
float &  yaw 
) [inline]

Extract the Euler angles (XYZ-convention) from the given transformation.

Parameters:
[in]tthe input transformation matrix
[in]rollthe resulting roll angle
[in]pitchthe resulting pitch angle
[in]yawthe resulting yaw angle

Definition at line 128 of file eigen.hpp.

int pcl::getFieldIndex ( const pcl::PCLPointCloud2 cloud,
const std::string field_name 
) [inline]

Get the index of a specified field (i.e., dimension/channel)

Parameters:
[in]cloudthe the point cloud message
[in]field_namethe string defining the field name

Definition at line 58 of file common/include/pcl/common/io.h.

template<typename PointT >
int pcl::getFieldIndex ( const pcl::PointCloud< PointT > &  cloud,
const std::string field_name,
std::vector< pcl::PCLPointField > &  fields 
) [inline]

Get the index of a specified field (i.e., dimension/channel)

Parameters:
[in]cloudthe the point cloud message
[in]field_namethe string defining the field name
[out]fieldsa vector to the original PCLPointField vector that the raw PointCloud message contains

Definition at line 49 of file common/include/pcl/common/impl/io.hpp.

template<typename PointT >
int pcl::getFieldIndex ( const std::string field_name,
std::vector< pcl::PCLPointField > &  fields 
) [inline]

Get the index of a specified field (i.e., dimension/channel)

Parameters:
[in]field_namethe string defining the field name
[out]fieldsa vector to the original PCLPointField vector that the raw PointCloud message contains

Definition at line 64 of file common/include/pcl/common/impl/io.hpp.

template<typename PointT >
void pcl::getFields ( const pcl::PointCloud< PointT > &  cloud,
std::vector< pcl::PCLPointField > &  fields 
) [inline]

Get the list of available fields (i.e., dimension/channel)

Parameters:
[in]cloudthe point cloud message
[out]fieldsa vector to the original PCLPointField vector that the raw PointCloud message contains

Definition at line 78 of file common/include/pcl/common/impl/io.hpp.

template<typename PointT >
void pcl::getFields ( std::vector< pcl::PCLPointField > &  fields) [inline]

Get the list of available fields (i.e., dimension/channel)

Parameters:
[out]fieldsa vector to the original PCLPointField vector that the raw PointCloud message contains

Definition at line 87 of file common/include/pcl/common/impl/io.hpp.

int pcl::getFieldSize ( const int  datatype) [inline]

Obtains the size of a specific field data type in bytes.

Parameters:
[in]datatypethe field data type (see PCLPointField.h)

Definition at line 127 of file common/include/pcl/common/io.h.

template<typename PointT >
std::string pcl::getFieldsList ( const pcl::PointCloud< PointT > &  cloud) [inline]

Get the list of all fields available in a given cloud.

Parameters:
[in]cloudthe the point cloud message

Definition at line 96 of file common/include/pcl/common/impl/io.hpp.

std::string pcl::getFieldsList ( const pcl::PCLPointCloud2 cloud) [inline]

Get the available point cloud fields as a space separated string.

Parameters:
[in]clouda pointer to the PointCloud message

Definition at line 113 of file common/include/pcl/common/io.h.

int pcl::getFieldType ( const int  size,
char  type 
) [inline]

Obtains the type of the PCLPointField from a specific size and type.

Parameters:
[in]sizethe size in bytes of the data field
[in]typea char describing the type of the field ('F' = float, 'I' = signed, 'U' = unsigned)

Definition at line 166 of file common/include/pcl/common/io.h.

char pcl::getFieldType ( const int  type) [inline]

Obtains the type of the PCLPointField from a specific PCLPointField as a char.

Parameters:
[in]typethe PCLPointField field type

Definition at line 204 of file common/include/pcl/common/io.h.

template<typename PointT >
void pcl::getMaxDistance ( const pcl::PointCloud< PointT > &  cloud,
const Eigen::Vector4f &  pivot_pt,
Eigen::Vector4f &  max_pt 
) [inline]

Get the point at maximum distance from a given point and a given pointcloud.

Parameters:
cloudthe point cloud data message
pivot_ptthe point from where to compute the distance
max_ptthe point in cloud that is the farthest point away from pivot_pt

Definition at line 116 of file common/include/pcl/common/impl/common.hpp.

template<typename PointT >
void pcl::getMaxDistance ( const pcl::PointCloud< PointT > &  cloud,
const std::vector< int > &  indices,
const Eigen::Vector4f &  pivot_pt,
Eigen::Vector4f &  max_pt 
) [inline]

Get the point at maximum distance from a given point and a given pointcloud.

Parameters:
cloudthe point cloud data message
pivot_ptthe point from where to compute the distance
indicesthe vector of point indices to use from cloud
max_ptthe point in cloud that is the farthest point away from pivot_pt

Definition at line 162 of file common/include/pcl/common/impl/common.hpp.

template<typename PointT >
double pcl::getMaxSegment ( const pcl::PointCloud< PointT > &  cloud,
PointT pmin,
PointT pmax 
) [inline]

Obtain the maximum segment in a given set of points, and return the minimum and maximum points.

Parameters:
[in]cloudthe point cloud dataset
[out]pminthe coordinates of the "minimum" point in cloud (one end of the segment)
[out]pmaxthe coordinates of the "maximum" point in cloud (the other end of the segment)
Returns:
the length of segment length

Definition at line 100 of file common/include/pcl/common/distances.h.

template<typename PointT >
double pcl::getMaxSegment ( const pcl::PointCloud< PointT > &  cloud,
const std::vector< int > &  indices,
PointT pmin,
PointT pmax 
) [inline]

Obtain the maximum segment in a given set of points, and return the minimum and maximum points.

Parameters:
[in]cloudthe point cloud dataset
[in]indicesa set of point indices to use from cloud
[out]pminthe coordinates of the "minimum" point in cloud (one end of the segment)
[out]pmaxthe coordinates of the "maximum" point in cloud (the other end of the segment)
Returns:
the length of segment length

Definition at line 139 of file common/include/pcl/common/distances.h.

void pcl::getMeanStd ( const std::vector< float > &  values,
double &  mean,
double &  stddev 
) [inline]

Compute both the mean and the standard deviation of an array of values.

Parameters:
valuesthe array of values
meanthe resultant mean of the distribution
stddevthe resultant standard deviation of the distribution

Definition at line 57 of file common/include/pcl/common/impl/common.hpp.

void pcl::getMeanStdDev ( const std::vector< float > &  values,
double &  mean,
double &  stddev 
)

Compute both the mean and the standard deviation of an array of values.

Parameters:
valuesthe array of values
meanthe resultant mean of the distribution
stddevthe resultant standard deviation of the distribution

Definition at line 73 of file common/src/common.cpp.

template<typename PointT >
void pcl::getMinMax ( const PointT histogram,
int  len,
float &  min_p,
float &  max_p 
) [inline]

Get the minimum and maximum values on a point histogram.

Parameters:
histogramthe point representing a multi-dimensional histogram
lenthe length of the histogram
min_pthe resultant minimum
max_pthe resultant maximum

Definition at line 377 of file common/include/pcl/common/impl/common.hpp.

void pcl::getMinMax ( const pcl::PCLPointCloud2 cloud,
int  idx,
const std::string field_name,
float &  min_p,
float &  max_p 
)

Get the minimum and maximum values on a point histogram.

Parameters:
cloudthe cloud containing multi-dimensional histograms
idxpoint index representing the histogram that we need to compute min/max for
field_namethe field name containing the multi-dimensional histogram
min_pthe resultant minimum
max_pthe resultant maximum

Definition at line 44 of file common/src/common.cpp.

template<typename PointT >
void pcl::getMinMax3D ( const pcl::PointCloud< PointT > &  cloud,
PointT min_pt,
PointT max_pt 
) [inline]

Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud.

Parameters:
cloudthe point cloud data message
min_ptthe resultant minimum bounds
max_ptthe resultant maximum bounds

Definition at line 212 of file common/include/pcl/common/impl/common.hpp.

template<typename PointT >
void pcl::getMinMax3D ( const pcl::PointCloud< PointT > &  cloud,
Eigen::Vector4f &  min_pt,
Eigen::Vector4f &  max_pt 
) [inline]

Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud.

Parameters:
cloudthe point cloud data message
min_ptthe resultant minimum bounds
max_ptthe resultant maximum bounds

Definition at line 249 of file common/include/pcl/common/impl/common.hpp.

template<typename PointT >
void pcl::getMinMax3D ( const pcl::PointCloud< PointT > &  cloud,
const std::vector< int > &  indices,
Eigen::Vector4f &  min_pt,
Eigen::Vector4f &  max_pt 
) [inline]

Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud.

Parameters:
cloudthe point cloud data message
indicesthe vector of point indices to use from cloud
min_ptthe resultant minimum bounds
max_ptthe resultant maximum bounds

Definition at line 325 of file common/include/pcl/common/impl/common.hpp.

template<typename PointT >
void pcl::getMinMax3D ( const pcl::PointCloud< PointT > &  cloud,
const pcl::PointIndices indices,
Eigen::Vector4f &  min_pt,
Eigen::Vector4f &  max_pt 
) [inline]

Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud.

Parameters:
cloudthe point cloud data message
indicesthe vector of point indices to use from cloud
min_ptthe resultant minimum bounds
max_ptthe resultant maximum bounds

Definition at line 287 of file common/include/pcl/common/impl/common.hpp.

bool pcl::getPointCloudAsEigen ( const pcl::PCLPointCloud2 in,
Eigen::MatrixXf &  out 
)

Copy the XYZ dimensions of a pcl::PCLPointCloud2 into Eigen format.

Parameters:
[in]inthe point cloud message
[out]outthe resultant Eigen MatrixXf format containing XYZ0 / point

Definition at line 328 of file common/src/io.cpp.

template<typename PointT >
void pcl::getPointsInBox ( const pcl::PointCloud< PointT > &  cloud,
Eigen::Vector4f &  min_pt,
Eigen::Vector4f &  max_pt,
std::vector< int > &  indices 
) [inline]

Get a set of points residing in a box given its bounds.

Parameters:
cloudthe point cloud data message
min_ptthe minimum bounds
max_ptthe maximum bounds
indicesthe resultant set of point indices residing in the box

Definition at line 73 of file common/include/pcl/common/impl/common.hpp.

template<typename Scalar >
void pcl::getTransformation ( Scalar  x,
Scalar  y,
Scalar  z,
Scalar  roll,
Scalar  pitch,
Scalar  yaw,
Eigen::Transform< Scalar, 3, Eigen::Affine > &  t 
) [inline]

Create a transformation from the given translation and Euler angles (XYZ-convention)

Parameters:
[in]xthe input x translation
[in]ythe input y translation
[in]zthe input z translation
[in]rollthe input roll angle
[in]pitchthe input pitch angle
[in]yawthe input yaw angle
[out]tthe resulting transformation matrix

Definition at line 151 of file eigen.hpp.

Eigen::Affine3f pcl::getTransformation ( float  x,
float  y,
float  z,
float  roll,
float  pitch,
float  yaw 
) [inline]

Create a transformation from the given translation and Euler angles (XYZ-convention)

Parameters:
[in]xthe input x translation
[in]ythe input y translation
[in]zthe input z translation
[in]rollthe input roll angle
[in]pitchthe input pitch angle
[in]yawthe input yaw angle
Returns:
the resulting transformation matrix

Definition at line 166 of file eigen.hpp.

void pcl::getTransformationFromTwoUnitVectors ( const Eigen::Vector3f &  y_direction,
const Eigen::Vector3f &  z_axis,
Eigen::Affine3f &  transformation 
) [inline]

Get the unique 3D rotation that will rotate z_axis into (0,0,1) and y_direction into a vector with x=0 (or into (0,1,0) should y_direction be orthogonal to z_axis)

Parameters:
[in]y_directionthe y direction
[in]z_axisthe z-axis
[out]transformationthe resultant 3D rotation

Definition at line 98 of file eigen.hpp.

Eigen::Affine3f pcl::getTransformationFromTwoUnitVectors ( const Eigen::Vector3f &  y_direction,
const Eigen::Vector3f &  z_axis 
) [inline]

Get the unique 3D rotation that will rotate z_axis into (0,0,1) and y_direction into a vector with x=0 (or into (0,1,0) should y_direction be orthogonal to z_axis)

Parameters:
[in]y_directionthe y direction
[in]z_axisthe z-axis
Returns:
transformation the resultant 3D rotation

Definition at line 107 of file eigen.hpp.

void pcl::getTransformationFromTwoUnitVectorsAndOrigin ( const Eigen::Vector3f &  y_direction,
const Eigen::Vector3f &  z_axis,
const Eigen::Vector3f &  origin,
Eigen::Affine3f &  transformation 
) [inline]

Get the transformation that will translate orign to (0,0,0) and rotate z_axis into (0,0,1) and y_direction into a vector with x=0 (or into (0,1,0) should y_direction be orthogonal to z_axis)

Parameters:
[in]y_directionthe y direction
[in]z_axisthe z-axis
[in]originthe origin
[in]transformationthe resultant transformation matrix

Definition at line 116 of file eigen.hpp.

void pcl::getTransFromUnitVectorsXY ( const Eigen::Vector3f &  x_axis,
const Eigen::Vector3f &  y_direction,
Eigen::Affine3f &  transformation 
) [inline]

Get the unique 3D rotation that will rotate x_axis into (1,0,0) and y_direction into a vector with z=0 (or into (0,1,0) should y_direction be orthogonal to z_axis)

Parameters:
[in]x_axisthe x-axis
[in]y_directionthe y direction
[out]transformationthe resultant 3D rotation

Definition at line 72 of file eigen.hpp.

Eigen::Affine3f pcl::getTransFromUnitVectorsXY ( const Eigen::Vector3f &  x_axis,
const Eigen::Vector3f &  y_direction 
) [inline]

Get the unique 3D rotation that will rotate x_axis into (1,0,0) and y_direction into a vector with z=0 (or into (0,1,0) should y_direction be orthogonal to z_axis)

Parameters:
[in]x_axisthe x-axis
[in]y_directionthe y direction
Returns:
the resulting 3D rotation

Definition at line 88 of file eigen.hpp.

void pcl::getTransFromUnitVectorsZY ( const Eigen::Vector3f &  z_axis,
const Eigen::Vector3f &  y_direction,
Eigen::Affine3f &  transformation 
) [inline]

Get the unique 3D rotation that will rotate z_axis into (0,0,1) and y_direction into a vector with x=0 (or into (0,1,0) should y_direction be orthogonal to z_axis)

Parameters:
[in]z_axisthe z-axis
[in]y_directionthe y direction
[out]transformationthe resultant 3D rotation

Definition at line 46 of file eigen.hpp.

Eigen::Affine3f pcl::getTransFromUnitVectorsZY ( const Eigen::Vector3f &  z_axis,
const Eigen::Vector3f &  y_direction 
) [inline]

Get the unique 3D rotation that will rotate z_axis into (0,0,1) and y_direction into a vector with x=0 (or into (0,1,0) should y_direction be orthogonal to z_axis)

Parameters:
[in]z_axisthe z-axis
[in]y_directionthe y direction
Returns:
the resultant 3D rotation

Definition at line 62 of file eigen.hpp.

void pcl::getTranslationAndEulerAngles ( const Eigen::Affine3f &  t,
float &  x,
float &  y,
float &  z,
float &  roll,
float &  pitch,
float &  yaw 
) [inline]

Extract x,y,z and the Euler angles (XYZ-convention) from the given transformation

Parameters:
[in]tthe input transformation matrix
[out]xthe resulting x translation
[out]ythe resulting y translation
[out]zthe resulting z translation
[out]rollthe resulting roll angle
[out]pitchthe resulting pitch angle
[out]yawthe resulting yaw angle

Definition at line 137 of file eigen.hpp.

template<typename FloatVectorT >
float pcl::HIK_Norm ( FloatVectorT  A,
FloatVectorT  B,
int  dim 
) [inline]

Compute the HIK norm of the vector between two points.

Parameters:
Athe first point
Bthe second point
dimthe number of dimensions in A and B (dimensions must match)
Note:
FloatVectorT is any type of vector with its values accessible via [ ]

Definition at line 232 of file norms.hpp.

template<typename Matrix >
Matrix::Scalar pcl::invert2x2 ( const Matrix &  matrix,
Matrix &  inverse 
) [inline]

Calculate the inverse of a 2x2 matrix.

Parameters:
[in]matrixmatrix to be inverted
[out]inversethe resultant inverted matrix
Note:
only the upper triangular part is taken into account => non symmetric matrices will give wrong results
Returns:
determinant of the original matrix => if 0 no inverse exists => result is invalid

Definition at line 553 of file common/include/pcl/common/eigen.h.

template<typename Matrix >
Matrix::Scalar pcl::invert3x3Matrix ( const Matrix &  matrix,
Matrix &  inverse 
) [inline]

Calculate the inverse of a general 3x3 matrix.

Parameters:
[in]matrixmatrix to be inverted
[out]inversethe resultant inverted matrix
Returns:
determinant of the original matrix => if 0 no inverse exists => result is invalid

Definition at line 618 of file common/include/pcl/common/eigen.h.

template<typename Matrix >
Matrix::Scalar pcl::invert3x3SymMatrix ( const Matrix &  matrix,
Matrix &  inverse 
) [inline]

Calculate the inverse of a 3x3 symmetric matrix.

Parameters:
[in]matrixmatrix to be inverted
[out]inversethe resultant inverted matrix
Note:
only the upper triangular part is taken into account => non symmetric matrices will give wrong results
Returns:
determinant of the original matrix => if 0 no inverse exists => result is invalid

Definition at line 578 of file common/include/pcl/common/eigen.h.

bool pcl::isBetterCorrespondence ( const Correspondence &  pc1,
const Correspondence &  pc2 
) [inline]

Comparator to enable us to sort a vector of PointCorrespondences according to their scores using std::sort (begin(), end(), isBetterCorrespondence);.

Definition at line 157 of file correspondence.h.

template<typename FloatVectorT >
float pcl::JM_Norm ( FloatVectorT  A,
FloatVectorT  B,
int  dim 
) [inline]

Compute the JM norm of the vector between two points.

Parameters:
Athe first point
Bthe second point
dimthe number of dimensions in A and B (dimensions must match)
Note:
FloatVectorT is any type of vector with its values accessible via [ ]

Definition at line 127 of file norms.hpp.

template<typename FloatVectorT >
float pcl::K_Norm ( FloatVectorT  A,
FloatVectorT  B,
int  dim,
float  P1,
float  P2 
) [inline]

Compute the K norm of the vector between two points.

Parameters:
Athe first point
Bthe second point
dimthe number of dimensions in A and B (dimensions must match)
P1the first parameter
P2the second parameter
Note:
FloatVectorT is any type of vector with its values accessible via [ ]

Definition at line 207 of file norms.hpp.

template<typename FloatVectorT >
float pcl::KL_Norm ( FloatVectorT  A,
FloatVectorT  B,
int  dim 
) [inline]

Compute the KL between two discrete probability density functions.

Parameters:
Athe first discrete PDF
Bthe second discrete PDF
dimthe number of dimensions in A and B (dimensions must match)
Note:
FloatVectorT is any type of vector with its values accessible via [ ]

Definition at line 218 of file norms.hpp.

template<typename FloatVectorT >
float pcl::L1_Norm ( FloatVectorT  A,
FloatVectorT  B,
int  dim 
) [inline]

Compute the L1 norm of the vector between two points.

Parameters:
Athe first point
Bthe second point
dimthe number of dimensions in A and B (dimensions must match)
Note:
FloatVectorT is any type of vector with its values accessible via [ ]

Definition at line 87 of file norms.hpp.

template<typename FloatVectorT >
float pcl::L2_Norm ( FloatVectorT  A,
FloatVectorT  B,
int  dim 
) [inline]

Compute the L2 norm of the vector between two points.

Parameters:
Athe first point
Bthe second point
dimthe number of dimensions in A and B (dimensions must match)
Note:
FloatVectorT is any type of vector with its values accessible via [ ]

Definition at line 110 of file norms.hpp.

template<typename FloatVectorT >
float pcl::L2_Norm_SQR ( FloatVectorT  A,
FloatVectorT  B,
int  dim 
) [inline]

Compute the squared L2 norm of the vector between two points.

Parameters:
Athe first point
Bthe second point
dimthe number of dimensions in A and B (dimensions must match)
Note:
FloatVectorT is any type of vector with its values accessible via [ ]

Definition at line 97 of file norms.hpp.

void pcl::lineToLineSegment ( const Eigen::VectorXf &  line_a,
const Eigen::VectorXf &  line_b,
Eigen::Vector4f &  pt1_seg,
Eigen::Vector4f &  pt2_seg 
)

Get the shortest 3D segment between two 3D lines.

Parameters:
line_athe coefficients of the first line (point, direction)
line_bthe coefficients of the second line (point, direction)
pt1_segthe first point on the line segment
pt2_segthe second point on the line segment

Definition at line 40 of file distances.cpp.

bool pcl::lineWithLineIntersection ( const Eigen::VectorXf &  line_a,
const Eigen::VectorXf &  line_b,
Eigen::Vector4f &  point,
double  sqr_eps = 1e-4 
)

Get the intersection of a two 3D lines in space as a 3D point.

Parameters:
[in]line_athe coefficients of the first line (point, direction)
[in]line_bthe coefficients of the second line (point, direction)
[out]pointholder for the computed 3D point
[in]sqr_epsmaximum allowable squared distance to the true solution

Definition at line 42 of file intersections.cpp.

bool pcl::lineWithLineIntersection ( const pcl::ModelCoefficients line_a,
const pcl::ModelCoefficients line_b,
Eigen::Vector4f &  point,
double  sqr_eps = 1e-4 
)

Get the intersection of a two 3D lines in space as a 3D point.

Parameters:
[in]line_athe coefficients of the first line (point, direction)
[in]line_bthe coefficients of the second line (point, direction)
[out]pointholder for the computed 3D point
[in]sqr_epsmaximum allowable squared distance to the true solution

Definition at line 61 of file intersections.cpp.

template<typename FloatVectorT >
float pcl::Linf_Norm ( FloatVectorT  A,
FloatVectorT  B,
int  dim 
) [inline]

Compute the L-infinity norm of the vector between two points.

Parameters:
Athe first point
Bthe second point
dimthe number of dimensions in A and B (dimensions must match)
Note:
FloatVectorT is any type of vector with its values accessible via [ ]

Definition at line 117 of file norms.hpp.

template<typename Derived >
void pcl::loadBinary ( Eigen::MatrixBase< Derived > const &  matrix,
std::istream &  file 
)

Read a matrix from an input stream.

Parameters:
[out]matrixthe resulting matrix, read from the input stream
[in,out]filethe input stream

Definition at line 190 of file eigen.hpp.

float pcl::normAngle ( float  alpha) [inline]

Normalize an angle to (-PI, PI].

Parameters:
alphathe input angle (in radians)

Definition at line 48 of file angles.hpp.

template<typename FloatVectorT >
float pcl::PF_Norm ( FloatVectorT  A,
FloatVectorT  B,
int  dim,
float  P1,
float  P2 
) [inline]

Compute the PF norm of the vector between two points.

Parameters:
Athe first point
Bthe second point
dimthe number of dimensions in A and B (dimensions must match)
P1the first parameter
P2the second parameter
Note:
FloatVectorT is any type of vector with its values accessible via [ ]

Definition at line 196 of file norms.hpp.

float pcl::rad2deg ( float  alpha) [inline]

Convert an angle from radians to degrees.

Parameters:
alphathe input angle (in radians)

Definition at line 61 of file angles.hpp.

double pcl::rad2deg ( double  alpha) [inline]

Convert an angle from radians to degrees.

Parameters:
alphathe input angle (in radians)

Definition at line 73 of file angles.hpp.

template<typename Derived >
void pcl::saveBinary ( const Eigen::MatrixBase< Derived > &  matrix,
std::ostream &  file 
)

Write a matrix to an output stream.

Parameters:
[in]matrixthe matrix to output
[out]filethe output stream

Definition at line 175 of file eigen.hpp.

template<typename FloatVectorT >
float pcl::selectNorm ( FloatVectorT  A,
FloatVectorT  B,
int  dim,
NormType  norm_type 
) [inline]

Method that calculates any norm type available, based on the norm_type variable.

Note:
FloatVectorT is any type of vector with its values accessible via [ ]

Definition at line 49 of file norms.hpp.

double pcl::sqrPointToLineDistance ( const Eigen::Vector4f &  pt,
const Eigen::Vector4f &  line_pt,
const Eigen::Vector4f &  line_dir 
) [inline]

Get the square distance from a point to a line (represented by a point and a direction)

Parameters:
pta point
line_pta point on the line (make sure that line_pt[3] = 0 as there are no internal checks!)
line_dirthe line direction

Definition at line 69 of file common/include/pcl/common/distances.h.

double pcl::sqrPointToLineDistance ( const Eigen::Vector4f &  pt,
const Eigen::Vector4f &  line_pt,
const Eigen::Vector4f &  line_dir,
const double  sqr_length 
) [inline]

Get the square distance from a point to a line (represented by a point and a direction)

Note:
This one is useful if one has to compute many distances to a fixed line, so the vector length can be pre-computed
Parameters:
pta point
line_pta point on the line (make sure that line_pt[3] = 0 as there are no internal checks!)
line_dirthe line direction
sqr_lengththe squared norm of the line direction

Definition at line 85 of file common/include/pcl/common/distances.h.

template<typename FloatVectorT >
float pcl::Sublinear_Norm ( FloatVectorT  A,
FloatVectorT  B,
int  dim 
) [inline]

Compute the sublinear norm of the vector between two points.

Parameters:
Athe first point
Bthe second point
dimthe number of dimensions in A and B (dimensions must match)
Note:
FloatVectorT is any type of vector with its values accessible via [ ]

Definition at line 156 of file norms.hpp.

template<std::size_t N>
void pcl::io::swapByte ( char *  bytes)

swap bytes order of a char array of length N

Parameters:
byteschar array to swap
template<typename PointT , typename Scalar >
PointT pcl::transformPoint ( const PointT point,
const Eigen::Transform< Scalar, 3, Eigen::Affine > &  transform 
) [inline]

Transform a point with members x,y,z.

Parameters:
[in]pointthe point to transform
[out]transformthe transformation to apply
Returns:
the transformed point

Definition at line 295 of file transforms.hpp.

template<typename PointT , typename Scalar >
void pcl::transformPointCloud ( const pcl::PointCloud< PointT > &  cloud_in,
pcl::PointCloud< PointT > &  cloud_out,
const Eigen::Transform< Scalar, 3, Eigen::Affine > &  transform 
)

Apply an affine transform defined by an Eigen Transform.

Parameters:
[in]cloud_inthe input point cloud
[out]cloud_outthe resultant output point cloud
[in]transforman affine transformation (typically a rigid transformation)
Note:
Can be used with cloud_in equal to cloud_out

Definition at line 42 of file transforms.hpp.

template<typename PointT , typename Scalar >
void pcl::transformPointCloud ( const pcl::PointCloud< PointT > &  cloud_in,
const std::vector< int > &  indices,
pcl::PointCloud< PointT > &  cloud_out,
const Eigen::Transform< Scalar, 3, Eigen::Affine > &  transform 
)

Apply an affine transform defined by an Eigen Transform.

Parameters:
[in]cloud_inthe input point cloud
[in]indicesthe set of point indices to use from the input point cloud
[out]cloud_outthe resultant output point cloud
[in]transforman affine transformation (typically a rigid transformation)

Definition at line 92 of file transforms.hpp.

template<typename PointT , typename Scalar >
void pcl::transformPointCloud ( const pcl::PointCloud< PointT > &  cloud_in,
const pcl::PointIndices indices,
pcl::PointCloud< PointT > &  cloud_out,
const Eigen::Transform< Scalar, 3, Eigen::Affine > &  transform 
)

Apply an affine transform defined by an Eigen Transform.

Parameters:
[in]cloud_inthe input point cloud
[in]indicesthe set of point indices to use from the input point cloud
[out]cloud_outthe resultant output point cloud
[in]transforman affine transformation (typically a rigid transformation)

Definition at line 100 of file common/include/pcl/common/transforms.h.

template<typename PointT , typename Scalar >
void pcl::transformPointCloud ( const pcl::PointCloud< PointT > &  cloud_in,
pcl::PointCloud< PointT > &  cloud_out,
const Eigen::Matrix< Scalar, 4, 4 > &  transform 
)

Apply a rigid transform defined by a 4x4 matrix.

Parameters:
[in]cloud_inthe input point cloud
[out]cloud_outthe resultant output point cloud
[in]transforma rigid transformation
Note:
Can be used with cloud_in equal to cloud_out

Definition at line 190 of file common/include/pcl/common/transforms.h.

template<typename PointT , typename Scalar >
void pcl::transformPointCloud ( const pcl::PointCloud< PointT > &  cloud_in,
const std::vector< int > &  indices,
pcl::PointCloud< PointT > &  cloud_out,
const Eigen::Matrix< Scalar, 4, 4 > &  transform 
)

Apply a rigid transform defined by a 4x4 matrix.

Parameters:
[in]cloud_inthe input point cloud
[in]indicesthe set of point indices to use from the input point cloud
[out]cloud_outthe resultant output point cloud
[in]transforma rigid transformation

Definition at line 214 of file common/include/pcl/common/transforms.h.

template<typename PointT , typename Scalar >
void pcl::transformPointCloud ( const pcl::PointCloud< PointT > &  cloud_in,
const pcl::PointIndices indices,
pcl::PointCloud< PointT > &  cloud_out,
const Eigen::Matrix< Scalar, 4, 4 > &  transform 
)

Apply a rigid transform defined by a 4x4 matrix.

Parameters:
[in]cloud_inthe input point cloud
[in]indicesthe set of point indices to use from the input point cloud
[out]cloud_outthe resultant output point cloud
[in]transforma rigid transformation

Definition at line 240 of file common/include/pcl/common/transforms.h.

template<typename PointT , typename Scalar >
void pcl::transformPointCloud ( const pcl::PointCloud< PointT > &  cloud_in,
pcl::PointCloud< PointT > &  cloud_out,
const Eigen::Matrix< Scalar, 3, 1 > &  offset,
const Eigen::Quaternion< Scalar > &  rotation 
) [inline]

Apply a rigid transform defined by a 3D offset and a quaternion.

Parameters:
[in]cloud_inthe input point cloud
[out]cloud_outthe resultant output point cloud
[in]offsetthe translation component of the rigid transformation
[in]rotationthe rotation component of the rigid transformation

Definition at line 269 of file transforms.hpp.

template<typename PointT , typename Scalar >
void pcl::transformPointCloudWithNormals ( const pcl::PointCloud< PointT > &  cloud_in,
pcl::PointCloud< PointT > &  cloud_out,
const Eigen::Matrix< Scalar, 4, 4 > &  transform 
)

Transform a point cloud and rotate its normals using an Eigen transform.

Parameters:
[in]cloud_inthe input point cloud
[out]cloud_outthe resultant output point cloud
[in]transforman affine transformation (typically a rigid transformation)
Note:
Can be used with cloud_in equal to cloud_out

Definition at line 265 of file common/include/pcl/common/transforms.h.

template<typename PointT , typename Scalar >
void pcl::transformPointCloudWithNormals ( const pcl::PointCloud< PointT > &  cloud_in,
const std::vector< int > &  indices,
pcl::PointCloud< PointT > &  cloud_out,
const Eigen::Matrix< Scalar, 4, 4 > &  transform 
)

Transform a point cloud and rotate its normals using an Eigen transform.

Parameters:
[in]cloud_inthe input point cloud
[in]indicesthe set of point indices to use from the input point cloud
[out]cloud_outthe resultant output point cloud
[in]transforman affine transformation (typically a rigid transformation)
Note:
Can be used with cloud_in equal to cloud_out

Definition at line 291 of file common/include/pcl/common/transforms.h.

template<typename PointT , typename Scalar >
void pcl::transformPointCloudWithNormals ( const pcl::PointCloud< PointT > &  cloud_in,
const pcl::PointIndices indices,
pcl::PointCloud< PointT > &  cloud_out,
const Eigen::Matrix< Scalar, 4, 4 > &  transform 
)

Transform a point cloud and rotate its normals using an Eigen transform.

Parameters:
[in]cloud_inthe input point cloud
[in]indicesthe set of point indices to use from the input point cloud
[out]cloud_outthe resultant output point cloud
[in]transforman affine transformation (typically a rigid transformation)
Note:
Can be used with cloud_in equal to cloud_out

Definition at line 319 of file common/include/pcl/common/transforms.h.

template<typename PointT , typename Scalar >
void pcl::transformPointCloudWithNormals ( const pcl::PointCloud< PointT > &  cloud_in,
pcl::PointCloud< PointT > &  cloud_out,
const Eigen::Matrix< Scalar, 3, 1 > &  offset,
const Eigen::Quaternion< Scalar > &  rotation 
) [inline]

Transform a point cloud and rotate its normals using an Eigen transform.

Parameters:
[in]cloud_inthe input point cloud
[out]cloud_outthe resultant output point cloud
[in]offsetthe translation component of the rigid transformation
[in]rotationthe rotation component of the rigid transformation

Definition at line 282 of file transforms.hpp.



pcl
Author(s): Open Perception
autogenerated on Wed Aug 26 2015 15:38:49