00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040 #include <pcl/range_image/range_image.h>
00041
00042 namespace pcl {
00043
00045 float RangeImageBorderExtractor::getObstacleBorderAngle(const BorderTraits& border_traits)
00046 {
00047 float x=0.0f, y=0.0f;
00048 if (border_traits[BORDER_TRAIT__OBSTACLE_BORDER_RIGHT])
00049 ++x;
00050 if (border_traits[BORDER_TRAIT__OBSTACLE_BORDER_LEFT])
00051 --x;
00052 if (border_traits[BORDER_TRAIT__OBSTACLE_BORDER_TOP])
00053 --y;
00054 if (border_traits[BORDER_TRAIT__OBSTACLE_BORDER_BOTTOM])
00055 ++y;
00056
00057 return atan2f(y, x);
00058 }
00059
00060 inline std::ostream& operator << (std::ostream& os, const RangeImageBorderExtractor::Parameters& p)
00061 {
00062 os << PVARC(p.pixel_radius_borders)<<PVARC(p.pixel_radius_plane_extraction)<<PVARC(p.pixel_radius_border_direction)
00063 << PVARC(p.minimum_border_probability)<<PVARN(p.pixel_radius_principal_curvature);
00064 return (os);
00065 }
00066
00068
00069
00070 float RangeImageBorderExtractor::getNeighborDistanceChangeScore(
00071 const RangeImageBorderExtractor::LocalSurface& local_surface,
00072 int x, int y, int offset_x, int offset_y, int pixel_radius) const
00073 {
00074 const PointWithRange& point = range_image_->getPoint(x, y);
00075 PointWithRange neighbor;
00076 range_image_->get1dPointAverage(x+offset_x, y+offset_y, offset_x, offset_y, pixel_radius, neighbor);
00077 if (pcl_isinf(neighbor.range))
00078 {
00079 if (neighbor.range < 0.0f)
00080 return 0.0f;
00081 else
00082 {
00083
00084 return 1.0f;
00085 }
00086 }
00087
00088 float neighbor_distance_squared = squaredEuclideanDistance(neighbor, point);
00089 if (neighbor_distance_squared <= local_surface.max_neighbor_distance_squared)
00090 return 0.0f;
00091 float ret = 1.0f - sqrtf(local_surface.max_neighbor_distance_squared / neighbor_distance_squared);
00092 if (neighbor.range < point.range)
00093 ret = -ret;
00094 return ret;
00095 }
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00120
00121
00122
00123 bool RangeImageBorderExtractor::get3dDirection(const BorderDescription& border_description, Eigen::Vector3f& direction,
00124 const LocalSurface* local_surface)
00125 {
00126 const BorderTraits border_traits = border_description.traits;
00127
00128 int delta_x=0, delta_y=0;
00129 if (border_traits[BORDER_TRAIT__OBSTACLE_BORDER_RIGHT])
00130 ++delta_x;
00131 if (border_traits[BORDER_TRAIT__OBSTACLE_BORDER_LEFT])
00132 --delta_x;
00133 if (border_traits[BORDER_TRAIT__OBSTACLE_BORDER_TOP])
00134 --delta_y;
00135 if (border_traits[BORDER_TRAIT__OBSTACLE_BORDER_BOTTOM])
00136 ++delta_y;
00137
00138 if (delta_x==0 && delta_y==0)
00139 return false;
00140
00141 int x=border_description.x, y=border_description.y;
00142 const PointWithRange& point = range_image_->getPoint(x, y);
00143 Eigen::Vector3f neighbor_point;
00144 range_image_->calculate3DPoint(static_cast<float> (x+delta_x), static_cast<float> (y+delta_y), point.range, neighbor_point);
00145
00146
00147 if (local_surface!=NULL)
00148 {
00149
00150 Eigen::Vector3f sensor_pos = range_image_->getSensorPos(),
00151 viewing_direction = neighbor_point-sensor_pos;
00152
00153 float lambda = (local_surface->normal_no_jumps.dot(local_surface->neighborhood_mean_no_jumps-sensor_pos)/
00154 local_surface->normal_no_jumps.dot(viewing_direction));
00155 neighbor_point = lambda*viewing_direction + sensor_pos;
00156
00157 }
00158
00159 direction = neighbor_point-point.getVector3fMap();
00160 direction.normalize();
00161
00162 return true;
00163 }
00164
00165 void RangeImageBorderExtractor::calculateBorderDirection(int x, int y)
00166 {
00167 int index = y*range_image_->width + x;
00168 Eigen::Vector3f*& border_direction = border_directions_[index];
00169 border_direction = NULL;
00170 const BorderDescription& border_description = border_descriptions_->points[index];
00171 const BorderTraits& border_traits = border_description.traits;
00172 if (!border_traits[BORDER_TRAIT__OBSTACLE_BORDER])
00173 return;
00174 border_direction = new Eigen::Vector3f(0.0f, 0.0f, 0.0f);
00175 if (!get3dDirection(border_description, *border_direction, surface_structure_[index]))
00176 {
00177 delete border_direction;
00178 border_direction = NULL;
00179 return;
00180 }
00181 }
00182
00183 bool RangeImageBorderExtractor::changeScoreAccordingToShadowBorderValue(int x, int y, int offset_x, int offset_y, float* border_scores,
00184 float* border_scores_other_direction, int& shadow_border_idx) const
00185 {
00186 float& border_score = border_scores[y*range_image_->width+x];
00187
00188 shadow_border_idx = -1;
00189 if (border_score<parameters_.minimum_border_probability)
00190 return false;
00191
00192 if (border_score == 1.0f)
00193 {
00194 if (range_image_->isMaxRange(x+offset_x, y+offset_y))
00195 {
00196 shadow_border_idx = (y+offset_y)*range_image_->width + x+offset_x;
00197 return true;
00198 }
00199 }
00200
00201 float best_shadow_border_score = 0.0f;
00202
00203 for (int neighbor_distance=1; neighbor_distance<=parameters_.pixel_radius_borders; ++neighbor_distance)
00204 {
00205 int neighbor_x=x+neighbor_distance*offset_x, neighbor_y=y+neighbor_distance*offset_y;
00206 if (!range_image_->isInImage(neighbor_x, neighbor_y))
00207 continue;
00208 float neighbor_shadow_border_score = border_scores_other_direction[neighbor_y*range_image_->width+neighbor_x];
00209
00210 if (neighbor_shadow_border_score < best_shadow_border_score)
00211 {
00212 shadow_border_idx = neighbor_y*range_image_->width + neighbor_x;
00213 best_shadow_border_score = neighbor_shadow_border_score;
00214 }
00215 }
00216 if (shadow_border_idx >= 0)
00217 {
00218
00219
00220 border_score *= (std::max)(0.9f, 1-powf(1+best_shadow_border_score, 3));
00221 if (border_score>=parameters_.minimum_border_probability)
00222 return true;
00223 }
00224 shadow_border_idx = -1;
00225 border_score = 0.0f;
00226 return false;
00227 }
00228
00229 float RangeImageBorderExtractor::updatedScoreAccordingToNeighborValues(int x, int y, const float* border_scores) const
00230 {
00231 float max_score_bonus = 0.5f;
00232
00233 float border_score = border_scores[y*range_image_->width+x];
00234
00235
00236 if (border_score + max_score_bonus*(1.0f-border_score) < parameters_.minimum_border_probability)
00237 return border_score;
00238
00239 float average_neighbor_score=0.0f, weight_sum=0.0f;
00240 for (int y2=y-1; y2<=y+1; ++y2)
00241 {
00242 for (int x2=x-1; x2<=x+1; ++x2)
00243 {
00244 if (!range_image_->isInImage(x2, y2) || (x2==x&&y2==y))
00245 continue;
00246 average_neighbor_score += border_scores[y2*range_image_->width+x2];
00247 weight_sum += 1.0f;
00248 }
00249 }
00250 average_neighbor_score /=weight_sum;
00251
00252 if (average_neighbor_score*border_score < 0.0f)
00253 return border_score;
00254
00255 float new_border_score = border_score + max_score_bonus * average_neighbor_score * (1.0f-fabsf(border_score));
00256
00257
00258 return new_border_score;
00259 }
00260
00261 bool RangeImageBorderExtractor::checkPotentialBorder(int x, int y, int offset_x, int offset_y, float* border_scores,
00262 float* border_scores_other_direction, int& shadow_border_idx) const
00263 {
00264 float& border_score = border_scores[y*range_image_->width+x];
00265 if (border_score<parameters_.minimum_border_probability)
00266 return false;
00267
00268 shadow_border_idx = -1;
00269 float best_shadow_border_score = -0.5f*parameters_.minimum_border_probability;
00270
00271 for (int neighbor_distance=1; neighbor_distance<=parameters_.pixel_radius_borders; ++neighbor_distance)
00272 {
00273 int neighbor_x=x+neighbor_distance*offset_x, neighbor_y=y+neighbor_distance*offset_y;
00274 if (!range_image_->isInImage(neighbor_x, neighbor_y))
00275 continue;
00276 float neighbor_shadow_border_score = border_scores_other_direction[neighbor_y*range_image_->width+neighbor_x];
00277
00278 if (neighbor_shadow_border_score < best_shadow_border_score)
00279 {
00280 shadow_border_idx = neighbor_y*range_image_->width + neighbor_x;
00281 best_shadow_border_score = neighbor_shadow_border_score;
00282 }
00283 }
00284 if (shadow_border_idx >= 0)
00285 {
00286 return true;
00287 }
00288 border_score = 0.0f;
00289 return false;
00290 }
00291
00292 bool RangeImageBorderExtractor::checkIfMaximum(int x, int y, int offset_x, int offset_y, float* border_scores, int shadow_border_idx) const
00293 {
00294 float border_score = border_scores[y*range_image_->width+x];
00295 int neighbor_x=x-offset_x, neighbor_y=y-offset_y;
00296 if (range_image_->isInImage(neighbor_x, neighbor_y) && border_scores[neighbor_y*range_image_->width+neighbor_x] > border_score)
00297 return false;
00298
00299 for (int neighbor_distance=1; neighbor_distance<=parameters_.pixel_radius_borders; ++neighbor_distance)
00300 {
00301 neighbor_x=x+neighbor_distance*offset_x; neighbor_y=y+neighbor_distance*offset_y;
00302 if (!range_image_->isInImage(neighbor_x, neighbor_y))
00303 continue;
00304 int neighbor_index = neighbor_y*range_image_->width + neighbor_x;
00305 if (neighbor_index==shadow_border_idx)
00306 return true;
00307
00308 float neighbor_border_score = border_scores[neighbor_index];
00309 if (neighbor_border_score > border_score)
00310 return false;
00311 }
00312 return true;
00313 }
00314
00315 bool RangeImageBorderExtractor::calculateMainPrincipalCurvature(int x, int y, int radius, float& magnitude,
00316 Eigen::Vector3f& main_direction) const
00317 {
00318 magnitude = 0.0f;
00319 int index = y*range_image_->width+x;
00320 LocalSurface* local_surface = surface_structure_[index];
00321 if (local_surface==NULL)
00322 return false;
00323
00324
00325
00326
00327
00328 VectorAverage3f vector_average;
00329 bool beams_valid[9];
00330 for (int step=1; step<=radius; ++step)
00331 {
00332 int beam_idx = 0;
00333 for (int y2=y-step; y2<=y+step; y2+=step)
00334 {
00335 for (int x2=x-step; x2<=x+step; x2+=step)
00336 {
00337 bool& beam_valid = beams_valid[beam_idx++];
00338 if (step==1)
00339 {
00340 if (x2==x && y2==y)
00341 beam_valid = false;
00342 else
00343 beam_valid = true;
00344 }
00345 else
00346 if (!beam_valid)
00347 continue;
00348
00349
00350 if (!range_image_->isValid(x2,y2))
00351 continue;
00352
00353 int index2 = y2*range_image_->width + x2;
00354
00355 const BorderTraits& border_traits = border_descriptions_->points[index2].traits;
00356 if (border_traits[BORDER_TRAIT__VEIL_POINT] || border_traits[BORDER_TRAIT__SHADOW_BORDER])
00357 {
00358 beam_valid = false;
00359 continue;
00360 }
00361
00362
00363 LocalSurface* local_surface2 = surface_structure_[index2];
00364 if (local_surface2==NULL)
00365 continue;
00366 Eigen::Vector3f& normal2 = local_surface2->normal_no_jumps;
00367
00368
00369 vector_average.add(normal2);
00370 }
00371 }
00372 }
00373
00374 if (vector_average.getNoOfSamples() < 3)
00375 return false;
00376
00377 Eigen::Vector3f eigen_values, eigen_vector1, eigen_vector2;
00378 vector_average.doPCA(eigen_values, eigen_vector1, eigen_vector2, main_direction);
00379 magnitude = sqrtf(eigen_values[2]);
00380
00381
00382
00383
00384
00385
00386
00387
00388
00389
00390
00391
00392
00393
00394
00395
00396
00397
00398 if (!pcl_isfinite(magnitude))
00399 return false;
00400
00401 return true;
00402 }
00403
00404 }