Struct Metadata
Defined in File Metadata.hpp
Struct Documentation
-
struct Metadata
Metadata of the parser.
Metadata for the object detection head.
@type classes: list @ivar classes: Names of object classes detected by the model. @type n_classes: int @ivar n_classes: Number of object classes detected by the model. @type iou_threshold: float @ivar iou_threshold: Non-max supression threshold limiting boxes intersection. @type conf_threshold: float @ivar conf_threshold: Confidence score threshold above which a detected object is considered valid. @type max_det: int @ivar max_det: Maximum detections per image. @type anchors: list @ivar anchors: Predefined bounding boxes of different sizes and aspect ratios. The innermost lists are length 2 tuples of box sizes. The middle lists are anchors for each output. The outmost lists go from smallest to largest output.
Metadata for the classification head.
@type classes: list @ivar classes: Names of object classes classified by the model. @type n_classes: int @ivar n_classes: Number of object classes classified by the model. @type is_softmax: bool @ivar is_softmax: True, if output is already softmaxed
Metadata for the SSD object detection head.
@type boxes_outputs: str @ivar boxes_outputs: Output name corresponding to predicted bounding box coordinates. @type scores_outputs: str @ivar scores_outputs: Output name corresponding to predicted bounding box confidence scores.
Metadata for the segmentation head.
@type classes: list @ivar classes: Names of object classes segmented by the model. @type n_classes: int @ivar n_classes: Number of object classes segmented by the model. @type is_softmax: bool @ivar is_softmax: True, if output is already softmaxed
Metadata for the YOLO head.
@type yolo_outputs: list @ivar yolo_outputs: A list of output names for each of the different YOLO grid sizes. @type mask_outputs: list | None @ivar mask_outputs: A list of output names for each mask output. @type protos_outputs: str | None @ivar protos_outputs: Output name for the protos. @type keypoints_outputs: list | None @ivar keypoints_outputs: A list of output names for the keypoints. @type angles_outputs: list | None @ivar angles_outputs: A list of output names for the angles. @type subtype: str @ivar subtype: YOLO family decoding subtype (e.g. yolov5, yolov6, yolov7 etc.) @type n_prototypes: int | None @ivar n_prototypes: Number of prototypes per bbox in YOLO instance segmnetation. @type n_keypoints: int | None @ivar n_keypoints: Number of keypoints per bbox in YOLO keypoint detection. @type is_softmax: bool | None @ivar is_softmax: True, if output is already softmaxed in YOLO instance segmentation
Metadata for the basic head. It allows you to specify additional fields.
@type postprocessor_path: str | None @ivar postprocessor_path: Path to the postprocessor. Metadata of the parser.
Metadata for the object detection head.
@type classes: list @ivar classes: Names of object classes detected by the model. @type n_classes: int @ivar n_classes: Number of object classes detected by the model. @type iou_threshold: float @ivar iou_threshold: Non-max supression threshold limiting boxes intersection. @type conf_threshold: float @ivar conf_threshold: Confidence score threshold above which a detected object is considered valid. @type max_det: int @ivar max_det: Maximum detections per image. @type anchors: list @ivar anchors: Predefined bounding boxes of different sizes and aspect ratios. The innermost lists are length 2 tuples of box sizes. The middle lists are anchors for each output. The outmost lists go from smallest to largest output.
Metadata for the classification head.
@type classes: list @ivar classes: Names of object classes classified by the model. @type n_classes: int @ivar n_classes: Number of object classes classified by the model. @type is_softmax: bool @ivar is_softmax: True, if output is already softmaxed
Metadata for the SSD object detection head.
@type boxes_outputs: str @ivar boxes_outputs: Output name corresponding to predicted bounding box coordinates. @type scores_outputs: str @ivar scores_outputs: Output name corresponding to predicted bounding box confidence scores.
Metadata for the segmentation head.
@type classes: list @ivar classes: Names of object classes segmented by the model. @type n_classes: int @ivar n_classes: Number of object classes segmented by the model. @type is_softmax: bool @ivar is_softmax: True, if output is already softmaxed
Metadata for the YOLO head.
@type yolo_outputs: list @ivar yolo_outputs: A list of output names for each of the different YOLO grid sizes. @type mask_outputs: list | None @ivar mask_outputs: A list of output names for each mask output. @type protos_outputs: str | None @ivar protos_outputs: Output name for the protos. @type keypoints_outputs: list | None @ivar keypoints_outputs: A list of output names for the keypoints. @type angles_outputs: list | None @ivar angles_outputs: A list of output names for the angles. @type subtype: str @ivar subtype: YOLO family decoding subtype (e.g. yolov5, yolov6, yolov7 etc.) @type n_prototypes: int | None @ivar n_prototypes: Number of prototypes per bbox in YOLO instance segmnetation. @type n_keypoints: int | None @ivar n_keypoints: Number of keypoints per bbox in YOLO keypoint detection. @type is_softmax: bool | None @ivar is_softmax: True, if output is already softmaxed in YOLO instance segmentation
Metadata for the basic head. It allows you to specify additional fields.
@type postprocessor_path: str | None @ivar postprocessor_path: Path to the postprocessor.
Public Members
-
std::optional<std::vector<std::vector<std::vector<double>>>> anchors
Predefined bounding boxes of different sizes and aspect ratios. The innermost lists are length 2 tuples of box sizes. The middle lists are anchors for each output. The outmost lists go from smallest to largest output.
-
std::optional<std::vector<std::string>> classes
Names of object classes recognized by the model.
-
std::optional<double> confThreshold
Confidence score threshold above which a detected object is considered valid.
-
std::optional<double> iouThreshold
Non-max supression threshold limiting boxes intersection.
-
std::optional<int64_t> maxDet
Maximum detections per image.
-
std::optional<int64_t> nClasses
Number of object classes recognized by the model.
-
std::optional<std::string> postprocessorPath
Path to the postprocessor.
-
std::optional<bool> isSoftmax
True, if output is already softmaxed.
True, if output is already softmaxed in YOLO instance segmentation.
-
std::optional<std::string> boxesOutputs
Output name corresponding to predicted bounding box coordinates.
-
std::optional<std::string> scoresOutputs
Output name corresponding to predicted bounding box confidence scores.
-
std::optional<std::vector<std::string>> anglesOutputs
A list of output names for the angles.
-
std::optional<std::vector<std::string>> keypointsOutputs
A list of output names for the keypoints.
-
std::optional<std::vector<std::string>> maskOutputs
A list of output names for each mask output.
-
std::optional<int64_t> nKeypoints
Number of keypoints per bbox in YOLO keypoint detection.
-
std::optional<int64_t> nPrototypes
Number of prototypes per bbox in YOLO instance segmnetation.
-
std::optional<std::string> subtype
YOLO family decoding subtype (e.g. yolov5, yolov6, yolov7 etc.).
-
std::optional<std::vector<std::string>> yoloOutputs
A list of output names for each of the different YOLO grid sizes.
-
nlohmann::json extraParams
Additional parameters
-
std::optional<std::vector<std::vector<std::vector<double>>>> anchors