Template Class copyable_unique_ptr

Inheritance Relationships

Base Type

  • public std::unique_ptr< T >

Class Documentation

template<typename T>
class copyable_unique_ptr : public std::unique_ptr<T>

A smart pointer with deep copy semantics.

This is similar to std::unique_ptr in that it does not permit shared ownership of the contained object. However, unlike std::unique_ptr, copyable_unique_ptr supports copy and assignment operations, by insisting that the contained object be “copyable”. To be copyable, the class must have either an accessible copy constructor, or it must have an accessible clone method with signature

std::unique_ptr<Foo> Clone() const;
where Foo is the type of the managed object. By “accessible” we mean either that the copy constructor or clone method is public, or friend copyable_unique_ptr<Foo>; appears in Foo’s class declaration.

Generally, the API is modeled as closely as possible on the C++ standard std::unique_ptr API and copyable_unique_ptr<T> is interoperable with unique_ptr<T> wherever that makes sense. However, there are some differences:

  1. It always uses a default deleter.

  2. There is no array version.

  3. To allow for future copy-on-write optimizations, there is a distinction between writable and const access, the get() method is modified to return only a const pointer, with get_mutable() added to return a writable pointer. Furthermore, derefencing (operator*()) a mutable pointer will give a mutable reference (in so far as T is not declared const), and dereferencing a const pointer will give a const reference.

This class is entirely inline and has no computational or space overhead except when copying is required; it contains just a single pointer and does no reference counting.

Usage

In the simplest use case, the instantiation type will match the type of object it references, e.g.:

copyable_unique_ptr<Foo> ptr = make_unique<Foo>(...);
In this case, as long Foo is deemed compatible, the behavior will be as expected, i.e., when ptr copies, it will contain a reference to a new instance of Foo.

copyable_unique_ptr can also be used with polymorphic classes &#8212; a copyable_unique_ptr, instantiated on a base class, references an instance of a derived class. When copying the object, we would want the copy to likewise contain an instance of the derived class. For example:

copyable_unique_ptr<Base> cu_ptr = make_unique<Derived>();
copyable_unique_ptr<Base> other_cu_ptr = cu_ptr;           // Triggers a copy.
is_dynamic_castable<Derived>(other_cu_ptr.get());          // Should be true.

This works for well-designed polymorphic classes.

  • The Base class’s Clone() implementation does not invoke the Derived class’s implementation of a suitable virtual method.

Warning

Ill-formed polymorphic classes can lead to fatal type slicing of the referenced object, such that the new copy contains an instance of Base instead of Derived. Some mistakes that would lead to this degenerate behavior:

Template Parameters:

T – The type of the contained object, which must be copyable as defined above. May be an abstract or concrete type.

Constructors

inline copyable_unique_ptr() noexcept

Default constructor stores a nullptr. No heap allocation is performed. The empty() method will return true when called on a default-constructed copyable_unique_ptr.

inline explicit copyable_unique_ptr(T *raw) noexcept

Given a raw pointer to a writable heap-allocated object, take over ownership of that object. No copying occurs.

inline explicit copyable_unique_ptr(const T &value)

Constructs a unique instance of T as a copy of the provided model value.

inline copyable_unique_ptr(const copyable_unique_ptr &cu_ptr)

Copy constructor is deep; the new copyable_unique_ptr object contains a new copy of the object in the source, created via the source object’s copy constructor or Clone() method. If the source container is empty this one will be empty also.

template<typename U>
inline explicit copyable_unique_ptr(const std::unique_ptr<U> &u_ptr)

Copy constructor from a standard unique_ptr of compatible type. The copy is deep; the new copyable_unique_ptr object contains a new copy of the object in the source, created via the source object’s copy constructor or Clone() method. If the source container is empty this one will be empty also.

inline copyable_unique_ptr(copyable_unique_ptr &&cu_ptr) noexcept

Move constructor is very fast and leaves the source empty. Ownership is transferred from the source to the new copyable_unique_ptr. If the source was empty this one will be empty also. No heap activity occurs.

inline explicit copyable_unique_ptr(std::unique_ptr<T> &&u_ptr) noexcept

Move constructor from a standard unique_ptr. The move is very fast and leaves the source empty. Ownership is transferred from the source to the new copyable_unique_ptr. If the source was empty this one will be empty also. No heap activity occurs.

template<typename U>
inline explicit copyable_unique_ptr(std::unique_ptr<U> &&u_ptr) noexcept

Move construction from a compatible standard unique_ptr. Type U* must be implicitly convertible to type T*. Ownership is transferred from the source to the new copyable_unique_ptr. If the source was empty this one will be empty also. No heap activity occurs.

Assignment

inline copyable_unique_ptr &operator=(T *raw) noexcept

This form of assignment replaces the currently-held object by the given source object and takes over ownership of the source object. The currently-held object (if any) is deleted.

inline copyable_unique_ptr &operator=(const T &ref)

This form of assignment replaces the currently-held object by a heap-allocated copy of the source object, created using its copy constructor or Clone() method. The currently-held object (if any) is deleted.

inline copyable_unique_ptr &operator=(const copyable_unique_ptr &cu_ptr)

Copy assignment from copyable_unique_ptr replaces the currently-held object by a copy of the object held in the source container, created using the source object’s copy constructor or Clone() method. The currently-held object (if any) is deleted. If the source container is empty this one will be empty also after the assignment. Nothing happens if the source and destination are the same container.

template<typename U>
inline copyable_unique_ptr &operator=(const copyable_unique_ptr<U> &cu_ptr)

Copy assignment from a compatible copyable_unique_ptr replaces the currently-held object by a copy of the object held in the source container, created using the source object’s copy constructor or Clone() method. The currently-held object (if any) is deleted. If the source container is empty this one will be empty also after the assignment. Nothing happens if the source and destination are the same container.

inline copyable_unique_ptr &operator=(const std::unique_ptr<T> &src)

Copy assignment from a standard unique_ptr replaces the currently-held object by a copy of the object held in the source container, created using the source object’s copy constructor or Clone() method. The currently-held object (if any) is deleted. If the source container is empty this one will be empty also after the assignment. Nothing happens if the source and destination are the same container.

template<typename U>
inline copyable_unique_ptr &operator=(const std::unique_ptr<U> &u_ptr)

Copy assignment from a compatible standard unique_ptr replaces the currently-held object by a copy of the object held in the source container, created using the source object’s copy constructor or Clone() method. The currently-held object (if any) is deleted. If the source container is empty this one will be empty also after the assignment. Nothing happens if the source and destination are the same container.

inline copyable_unique_ptr &operator=(copyable_unique_ptr &&cu_ptr) noexcept

Move assignment replaces the currently-held object by the source object, leaving the source empty. The currently-held object (if any) is deleted. The instance is not copied. Nothing happens if the source and destination are the same containers.

template<typename U>
inline copyable_unique_ptr &operator=(copyable_unique_ptr<U> &&cu_ptr) noexcept

Move assignment replaces the currently-held object by the compatible source object, leaving the source empty. The currently-held object (if any) is deleted. The instance is not copied. Nothing happens if the source and destination are the same containers.

inline copyable_unique_ptr &operator=(std::unique_ptr<T> &&u_ptr) noexcept

Move assignment replaces the currently-held object by the source object, leaving the source empty. The currently-held object (if any) is deleted. The instance is not copied. Nothing happens if the source and destination are the same containers.

template<typename U>
inline copyable_unique_ptr &operator=(std::unique_ptr<U> &&u_ptr) noexcept

Move assignment replaces the currently-held object by the compatible source object, leaving the source empty. The currently-held object (if any) is deleted. The instance is not copied. Nothing happens if the source and destination are the same containers.

Observers <br>

inline bool empty() const noexcept

Return true if this container is empty, which is the state the container is in immediately after default construction and various other operations.

inline const T *get() const noexcept

Return a const pointer to the contained object if any, or nullptr. Note that this is different than get() for the standard smart pointers like std::unique_ptr which return a writable pointer. Use get_mutable() here for that purpose.

inline T *get_mutable() noexcept

Return a writable pointer to the contained object if any, or nullptr. Note that you need write access to this container in order to get write access to the object it contains.

Warning

If copyable_unique_ptr is instantiated on a const template parameter (e.g., copyable_unique_ptr<const Foo>), then get_mutable() returns a const pointer.

inline const T &operator*() const

Return a const reference to the contained object. Note that this is different from std::unique_ptr::operator*() which would return a non-const reference (if T is non-const), even if the container itself is const. For a const copyable_unique_ptr will always return a const reference to its contained value.

Warning

Currently copyable_unique_ptr is a std::unique_ptr. As such, a const copyable_unique_ptr<Foo> can be upcast to a const unique_ptr<Foo> and the parent’s behavior will provide a mutable reference. This is strongly discouraged and will break as the implementation of this class changes to shore up this gap in the const correctness protection.

Pre:

this != nullptr reports true.

inline T &operator*()

Return a writable reference to the contained object (if T is itself not const). Note that you need write access to this container in order to get write access to the object it contains.

We strongly recommend, that, if dereferencing a copyable_unique_ptr without the intention of mutating the underlying value, prefer to dereference a const copyable_unique_ptr (or use *my_ptr.get()) and not a mutable copyable_unique_ptr. As “copy-on-write” behavior is introduced in the future, this recommended practice will prevent unwanted copies of the underlying value.

If copyable_unique_ptr is instantiated on a const template parameter (e.g., copyable_unique_ptr<const Foo>), then operator*() must return a const reference.

Pre:

this != nullptr reports true.

template<class charT, class traits, class T>
std::basic_ostream<charT, traits> &operator<<(std::basic_ostream<charT, traits> &os, const copyable_unique_ptr<T> &cu_ptr)

Output the system-dependent representation of the pointer contained in a copyable_unique_ptr object. This is equivalent to os << p.get();.