Template Class DifferentialActionModelContactFwdDynamicsTpl
Defined in File contact-fwddyn.hpp
Inheritance Relationships
Base Type
public crocoddyl::DifferentialActionModelAbstractTpl< _Scalar >(Template Class DifferentialActionModelAbstractTpl)
Class Documentation
-
template<typename _Scalar>
class DifferentialActionModelContactFwdDynamicsTpl : public crocoddyl::DifferentialActionModelAbstractTpl<_Scalar> Differential action model for contact forward dynamics in multibody systems.
This class implements contact forward dynamics given a stack of rigid-contacts described in
ContactModelMultipleTpl, i.e.,\[\begin{split} \left[\begin{matrix}\dot{\mathbf{v}} \\ -\boldsymbol{\lambda}\end{matrix}\right] = \left[\begin{matrix}\mathbf{M} & \mathbf{J}^{\top}_c \\ {\mathbf{J}_{c}} & \mathbf{0} \end{matrix}\right]^{-1} \left[\begin{matrix}\boldsymbol{\tau}_b \\ -\mathbf{a}_0 \\\end{matrix}\right], \end{split}\]where \(\mathbf{q}\in Q\), \(\mathbf{v}\in\mathbb{R}^{nv}\) are the configuration point and generalized velocity (its tangent vector), respectively; \(\boldsymbol{\tau}_b=\boldsymbol{\tau} - \mathbf{h}(\mathbf{q},\mathbf{v})\) is the bias forces that depends on the torque inputs \(\boldsymbol{\tau}\) and the Coriolis effect and gravity field \(\mathbf{h}(\mathbf{q},\mathbf{v})\); \(\mathbf{J}_c\in\mathbb{R}^{nc\times nv}\) is the contact Jacobian expressed in the local frame; and \(\mathbf{a}_0\in\mathbb{R}^{nc}\) is the desired acceleration in the constraint space. To improve stability in the numerical integration, we define PD gains that are similar in spirit to Baumgarte stabilization:\[ \mathbf{a}_0 = \mathbf{a}_{\lambda(c)} - \alpha \,^oM^{ref}_{\lambda(c)}\ominus\,^oM_{\lambda(c)} - \beta\mathbf{v}_{\lambda(c)}, \]where \(\mathbf{v}_{\lambda(c)}\), \(\mathbf{a}_{\lambda(c)}\) are the spatial velocity and acceleration at the parent body of the contact \(\lambda(c)\), respectively; \(\alpha\) and \(\beta\) are the stabilization gains; \(\,^oM^{ref}_{\lambda(c)}\ominus\,^oM_{\lambda(c)}\) is the \(\mathbb{SE}(3)\) inverse composition between the reference contact placement and the current one.The derivatives of the system acceleration and contact forces are computed efficiently based on the analytical derivatives of Recursive Newton Euler Algorithm (RNEA) as described in mastalli-icra20. Note that the algorithm for computing the RNEA derivatives is described in carpentier-rss18.
The stack of cost and constraint functions are implemented in
CostModelSumTplandConstraintModelAbstractTpl, respectively. The computation of the contact dynamics and its derivatives are carrying out insidecalc()andcalcDiff()functions, respectively. It is also important to remark thatcalcDiff()computes the derivatives using the latest stored values bycalc(). Thus, we need to runcalc()first.Public Types
-
typedef DifferentialActionModelAbstractTpl<Scalar> Base
-
typedef DifferentialActionDataContactFwdDynamicsTpl<Scalar> Data
-
typedef MathBaseTpl<Scalar> MathBase
-
typedef StateMultibodyTpl<Scalar> StateMultibody
-
typedef CostModelSumTpl<Scalar> CostModelSum
-
typedef ConstraintModelManagerTpl<Scalar> ConstraintModelManager
-
typedef ContactModelMultipleTpl<Scalar> ContactModelMultiple
-
typedef ActuationModelAbstractTpl<Scalar> ActuationModelAbstract
-
typedef DifferentialActionDataAbstractTpl<Scalar> DifferentialActionDataAbstract
Public Functions
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW CROCODDYL_DERIVED_CAST (DifferentialActionModelBase, DifferentialActionModelContactFwdDynamicsTpl) typedef _Scalar Scalar
Initialize the contact forward-dynamics action model.
It describes the dynamics evolution of a multibody system under rigid-contact constraints defined by
ContactModelMultipleTpl. It computes the cost described inCostModelSumTpl.- Parameters:
state – [in] State of the multibody system
actuation – [in] Actuation model
contacts – [in] Stack of rigid contact
costs – [in] Stack of cost functions
JMinvJt_damping – [in] Damping term used in operational space inertia matrix (default 0.)
enable_force – [in] Enable the computation of the contact force derivatives (default false)
Initialize the contact forward-dynamics action model.
It describes the dynamics evolution of a multibody system under rigid-contact constraints defined by
ContactModelMultipleTpl. It computes the cost described inCostModelSumTpl.- Parameters:
state – [in] State of the multibody system
actuation – [in] Actuation model
contacts – [in] Stack of rigid contact
costs – [in] Stack of cost functions
constraints – [in] Stack of constraints
JMinvJt_damping – [in] Damping term used in operational space inertia matrix (default 0.)
enable_force – [in] Enable the computation of the contact force derivatives (default false)
-
virtual ~DifferentialActionModelContactFwdDynamicsTpl() = default
Compute the system acceleration, and cost value.
It computes the system acceleration using the contact dynamics.
- Parameters:
data – [in] Contact forward-dynamics data
x – [in] State point \(\mathbf{x}\in\mathbb{R}^{ndx}\)
u – [in] Control input \(\mathbf{u}\in\mathbb{R}^{nu}\)
Compute the total cost value for nodes that depends only on the state.
It updates the total cost and the system acceleration is not updated as it is expected to be zero. Additionally, it does not update the contact forces. This function is used in the terminal nodes of an optimal control problem.
- Parameters:
data – [in] Contact forward-dynamics data
x – [in] State point \(\mathbf{x}\in\mathbb{R}^{ndx}\)
Compute the derivatives of the contact dynamics, and cost function.
- Parameters:
data – [in] Contact forward-dynamics data
x – [in] State point \(\mathbf{x}\in\mathbb{R}^{ndx}\)
u – [in] Control input \(\mathbf{u}\in\mathbb{R}^{nu}\)
Compute the derivatives of the cost functions with respect to the state only.
It updates the derivatives of the cost function with respect to the state only. Additionally, it does not update the contact forces derivatives. This function is used in the terminal nodes of an optimal control problem.
- Parameters:
data – [in] Contact forward-dynamics data
x – [in] State point \(\mathbf{x}\in\mathbb{R}^{ndx}\)
-
virtual std::shared_ptr<DifferentialActionDataAbstract> createData() override
Create the contact forward-dynamics data.
- Returns:
contact forward-dynamics data
-
template<typename NewScalar>
DifferentialActionModelContactFwdDynamicsTpl<NewScalar> cast() const Cast the contact-fwddyn model to a different scalar type.
It is useful for operations requiring different precision or scalar types.
- Template Parameters:
NewScalar – The new scalar type to cast to.
- Returns:
DifferentialActionModelContactFwdDynamicsTpl<NewScalar> A differential-action model with the new scalar type.
Check that the given data belongs to the contact forward-dynamics data.
Computes the quasic static commands.
The quasic static commands are the ones produced for a the reference posture as an equilibrium point, i.e. for \(\mathbf{f}(\mathbf{q},\mathbf{v}=\mathbf{0},\mathbf{u})=\mathbf{0}\)
- Parameters:
data – [in] Differential action data
u – [out] Quasic static commands
x – [in] State point (velocity has to be zero)
maxiter – [in] Maximum allowed number of iterations
tol – [in] Tolerance
-
virtual std::size_t get_ng() const override
Return the number of inequality constraints.
-
virtual std::size_t get_nh() const override
Return the number of equality constraints.
-
virtual std::size_t get_ng_T() const override
Return the number of equality terminal constraints.
-
virtual std::size_t get_nh_T() const override
Return the number of equality terminal constraints.
-
virtual const VectorXs &get_g_lb() const override
Return the lower bound of the inequality constraints.
-
virtual const VectorXs &get_g_ub() const override
Return the upper bound of the inequality constraints.
-
const std::shared_ptr<ActuationModelAbstract> &get_actuation() const
Return the actuation model.
-
const std::shared_ptr<ContactModelMultiple> &get_contacts() const
Return the contact model.
-
const std::shared_ptr<CostModelSum> &get_costs() const
Return the cost model.
-
const std::shared_ptr<ConstraintModelManager> &get_constraints() const
Return the constraint model manager.
-
pinocchio::ModelTpl<Scalar> &get_pinocchio() const
Return the Pinocchio model.
-
const Scalar get_damping_factor() const
Return the damping factor used in operational space inertia matrix.
-
void set_damping_factor(const Scalar damping)
Modify the damping factor used in operational space inertia matrix.
-
virtual void print(std::ostream &os) const override
Print relevant information of the contact forward-dynamics model.
- Parameters:
os – [out] Output stream object
-
typedef DifferentialActionModelAbstractTpl<Scalar> Base