Class List

Here are the classes, structs, unions and interfaces with brief descriptions:
pcl::_PointWithViewpoint
pcl::_PointXYZ
pcl::traits::asEnum< T >
pcl::traits::asEnum< double >
pcl::traits::asEnum< float >
pcl::traits::asEnum< int16_t >
pcl::traits::asEnum< int32_t >
pcl::traits::asEnum< int8_t >
pcl::traits::asEnum< uint16_t >
pcl::traits::asEnum< uint32_t >
pcl::traits::asEnum< uint8_t >
pcl::BivariatePolynomialT< real >This represents a bivariate polynomial and provides some functionality for it
pcl::BorderDescription
pcl::Boundary
pcl::BoundaryEstimation< PointInT, PointNT, PointOutT >BoundaryEstimation estimates whether a set of points is lying on surface boundaries using an angle criterion. The code makes use of the estimated surface normals at each point in the input dataset
sensor_msgs::CameraInfo_< ContainerAllocator >
pcl::ComparisonBase< PointT >The (abstract) base class for the comparison object
pcl::ConcaveHull< PointInT >ConcaveHull (alpha shapes) using libqhull library
pcl::ConditionalRemoval< PointT >ConditionalRemoval filters data that satisfies certain conditions
pcl::ConditionAnd< PointT >AND condition
pcl::ConditionBase< PointT >Base condition class
pcl::ConditionOr< PointT >OR condition
pcl::ConvexHull< PointInT >ConvexHull using libqhull library
pcl::registration::CorrespondenceClass representing a match between two descriptors
pcl::registration::CorrespondenceEstimation< PointSource, PointTarget >
pcl::registration::CorrespondenceRejector
pcl::registration::CorrespondenceRejectorDistance
pcl::registration::CorrespondenceRejectorOneToOne
pcl::registration::CorrespondenceRejectorReciprocal
pcl::registration::CorrespondenceRejectorSampleConsensus< PointT >
pcl::registration::CorrespondenceRejectorTrimmed
pcl::traits::datatype< PointT, Tag >
ros::message_traits::DataType< ::pcl::ModelCoefficients_< ContainerAllocator > >
ros::message_traits::DataType< ::pcl::PointIndices_< ContainerAllocator > >
ros::message_traits::DataType< ::pcl::PolygonMesh_< ContainerAllocator > >
ros::message_traits::DataType< ::pcl::Vertices_< ContainerAllocator > >
pcl::traits::decomposeArray< T >
pcl::DefaultPointRepresentation< PointDefault >DefaultPointRepresentation extends PointRepresentation to define default behavior for common point types
pcl::DefaultPointRepresentation< FPFHSignature33 >
pcl::DefaultPointRepresentation< PFHSignature125 >
pcl::DefaultPointRepresentation< PointNormal >
pcl::DefaultPointRepresentation< PointXYZ >
pcl::DefaultPointRepresentation< PointXYZI >
ros::message_traits::Definition< ::pcl::ModelCoefficients_< ContainerAllocator > >
ros::message_traits::Definition< ::pcl::PointIndices_< ContainerAllocator > >
ros::message_traits::Definition< ::pcl::PolygonMesh_< ContainerAllocator > >
ros::message_traits::Definition< ::pcl::Vertices_< ContainerAllocator > >
pcl::GreedyProjectionTriangulation< PointInT >::doubleEdgeStruct for storing the edges starting from a fringe point
pcl::EuclideanClusterExtraction< PointT >EuclideanClusterExtraction represents a segmentation class for cluster extraction in an Euclidean sense
pcl::ExtractIndices< PointT >ExtractIndices extracts a set of indices from a PointCloud as a separate PointCloud
pcl::ExtractIndices< sensor_msgs::PointCloud2 >ExtractIndices extracts a set of indices from a PointCloud as a separate PointCloud
pcl::ExtractPolygonalPrismData< PointT >ExtractPolygonalPrismData uses a set of point indices that represent a planar model, and together with a given height, generates a 3D polygonal prism. The polygonal prism is then used to segment all points lying inside it
pcl::Feature< PointInT, PointOutT >Feature represents the base feature class. Some generic 3D operations that are applicable to all features are defined here as static methods
pcl::registration::CorrespondenceEstimation< PointSource, PointTarget >::FeatureContainer< FeatureType >An inner class containing pointers to the source and target feature clouds along with the KdTree and the parameters needed to perform the correspondence search. This class extends FeatureContainerInterface, which contains abstract methods for any methods that do not depend on the FeatureType --- these methods can thus be called from a pointer to FeatureContainerInterface without casting to the derived class
pcl::Registration< PointSource, PointTarget >::FeatureContainer< FeatureType >An inner class containing pointers to the source and target feature clouds along with the KdTree and the parameters needed to perform the correspondence search. This class extends FeatureContainerInterface, which contains abstract methods for any methods that do not depend on the FeatureType --- these methods can thus be called from a pointer to FeatureContainerInterface without casting to the derived class
pcl::registration::CorrespondenceEstimation< PointSource, PointTarget >::FeatureContainerInterface
pcl::Registration< PointSource, PointTarget >::FeatureContainerInterface
pcl::FeatureFromNormals< PointInT, PointNT, PointOutT >
pcl::Narf::FeaturePointRepresentation
pcl::detail::FieldAdder< PointT >
pcl::FieldComparison< PointT >The field-based specialization of the comparison object
pcl::traits::fieldList< PointT >
pcl::detail::FieldMapper< PointT >
pcl::detail::FieldMapping
pcl::Filter< PointT >Filter represents the base filter class. Some generic 3D operations that are applicable to all filters are defined here as static methods
pcl::Filter< sensor_msgs::PointCloud2 >Filter represents the base filter class. Some generic 3D operations that are applicable to all filters are defined here as static methods
pcl::for_each_type_impl< done >
pcl::for_each_type_impl< false >
pcl::FPFHEstimation< PointInT, PointNT, PointOutT >FPFHEstimation estimates the Fast Point Feature Histogram (FPFH) descriptor for a given point cloud dataset containing points and normals
pcl::FPFHEstimationOMP< PointInT, PointNT, PointOutT >FPFHEstimationOMP estimates the Fast Point Feature Histogram (FPFH) descriptor for a given point cloud dataset containing points and normals, in parallel, using the OpenMP standard
pcl::FPFHSignature33
GeneralPoint
pcl::GreedyProjectionTriangulation< PointInT >GreedyProjectionTriangulation is an implementation of a greedy triangulation algorithm for 3D points based on local 2D projections. It assumes locally smooth surfaces and relatively smooth transitions between areas with different point densities
pcl::GridProjection< PointNT >Grid projection surface reconstruction method
ros::message_traits::HasHeader< ::pcl::ModelCoefficients_< ContainerAllocator > >
ros::message_traits::HasHeader< ::pcl::PointIndices_< ContainerAllocator > >
ros::message_traits::HasHeader< ::pcl::PolygonMesh_< ContainerAllocator > >
ros::message_traits::HasHeader< const ::pcl::ModelCoefficients_< ContainerAllocator > >
ros::message_traits::HasHeader< const ::pcl::PointIndices_< ContainerAllocator > >
ros::message_traits::HasHeader< const ::pcl::PolygonMesh_< ContainerAllocator > >
roslib::Header_< ContainerAllocator >
pcl::Histogram< N >
sensor_msgs::Image_< ContainerAllocator >
pcl::IntegralImage2D< DataType, IIDataType >Generic implementation for creating 2D integral images (including second order integral images)
pcl::IntegralImageNormalEstimationSurface normal estimation on dense data using integral images
pcl::IntensityGradient
pcl::IntensityGradientEstimation< PointInT, PointNT, PointOutT >IntensityGradientEstimation estimates the intensity gradient for a point cloud that contains position and intensity values. The intensity gradient at a given point will be a vector orthogonal to the surface normal and pointing in the direction of the greatest increase in local intensity; the vector's magnitude indicates the rate of intensity change
pcl::IntensitySpinEstimation< PointInT, PointOutT >IntensitySpinEstimation estimates the intensity-domain spin image descriptors for a given point cloud dataset containing points and intensity. For more information about the intensity-domain spin image descriptor, see:
pcl::InterestPoint
pcl::InvalidConversionExceptionAn exception that is thrown when a PointCloud2 message cannot be converted into a PCL type
pcl::PosesFromMatches::PoseEstimate::IsBetter
pcl::IsNotDenseExceptionAn exception that is thrown when a PointCloud is not dense but is attemped to be used as dense
pcl::IterativeClosestPoint< PointSource, PointTarget >IterativeClosestPoint is an implementation of the Iterative Closest Point algorithm based on Singular Value Decomposition (SVD)
pcl::IterativeClosestPointNonLinear< PointSource, PointTarget >IterativeClosestPointNonLinear is an ICP variant that uses Levenberg-Marquardt optimization backend. The resultant transformation is optimized as a quaternion
pcl::KdTree< PointT >KdTree represents the base spatial locator class for nearest neighbor estimation. All types of spatial locators should inherit from KdTree
pcl::KdTreeFLANN< PointT >KdTreeFLANN is a generic type of 3D spatial locator using kD-tree structures. The class is making use of the FLANN (Fast Library for Approximate Nearest Neighbor) project by Marius Muja and David Lowe
pcl::Keypoint< PointInT, PointOutT >Keypoint represents the base class for key points
KeypointT
pcl::VoxelGrid< PointT >::LeafSimple structure to hold an nD centroid and the number of points in a leaf
pcl::VoxelGrid< sensor_msgs::PointCloud2 >::LeafSimple structure to hold an nD centroid and the number of points in a leaf
pcl::GridProjection< PointNT >::LeafData leaf
pcl::LeastMedianSquares< PointT >LeastMedianSquares represents an implementation of the LMedS (Least Median of Squares) algorithm. LMedS is a RANSAC-like model-fitting algorithm that can tolerate up to 50% outliers without requiring thresholds to be set. See Andrea Fusiello's "Elements of Geometric Computer Vision" (http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO4/tutorial.html#x1-520007) for more details
pcl::RangeImageBorderExtractor::LocalSurfaceStores some information extracted from the neighborhood of a point
pcl::MaximumLikelihoodSampleConsensus< PointT >MaximumLikelihoodSampleConsensus represents an implementation of the MLESAC (Maximum Likelihood Estimator SAmple Consensus) algorithm, as described in: "MLESAC: A new robust estimator with application to estimating image geometry", P.H.S. Torr and A. Zisserman, Computer Vision and Image Understanding, vol 78, 2000
ros::message_traits::MD5Sum< ::pcl::ModelCoefficients_< ContainerAllocator > >
ros::message_traits::MD5Sum< ::pcl::PointIndices_< ContainerAllocator > >
ros::message_traits::MD5Sum< ::pcl::PolygonMesh_< ContainerAllocator > >
ros::message_traits::MD5Sum< ::pcl::Vertices_< ContainerAllocator > >
Message
pcl::MEstimatorSampleConsensus< PointT >MEstimatorSampleConsensus represents an implementation of the MSAC (M-estimator SAmple Consensus) algorithm, as described in: "MLESAC: A new robust estimator with application to estimating image geometry", P.H.S. Torr and A. Zisserman, Computer Vision and Image Understanding, vol 78, 2000
pcl::msg::_ModelCoefficients::ModelCoefficients
pcl::ModelCoefficients_< ContainerAllocator >
pcl::MomentInvariants
pcl::MomentInvariantsEstimation< PointInT, PointOutT >MomentInvariantsEstimation estimates the 3 moment invariants (j1, j2, j3) at each 3D point
pcl::MovingLeastSquares< PointInT, NormalOutT >MovingLeastSquares represent an implementation of the MLS (Moving Least Squares) algorithm for data smoothing and improved normal estimation
MyPoint
MyPointRepresenationXY
MyPointXYZ
pcl::traits::name< PointT, Tag, dummy >
pcl::NarfNARF (Normal Aligned Radial Features) is a point feature descriptor type for 3D data. Please refer to pcl/features/narf_descriptor.h if you want the class derived from pcl Feature
pcl::Narf36
pcl::NarfDescriptor
pcl::NarfKeypointNARF (Normal Aligned Radial Feature) keypoints. Input is a range image, output the indices of the keypoints
pcl::NdCentroidFunctor< PointT >Helper functor structure for n-D centroid estimation
pcl::NdConcatenateFunctor< PointInT, PointOutT >Helper functor structure for concatenate
pcl::NdCopyEigenPointFunctor< PointT >Helper functor structure for copying data between an Eigen::VectorXf and a PointT
pcl::NdCopyPointEigenFunctor< PointT >Helper functor structure for copying data between an Eigen::VectorXf and a PointT
pcl::GreedyProjectionTriangulation< PointInT >::nnAngleStruct for storing the angles to nearest neighbors
pcl::Normal
pcl::NormalEstimation< PointInT, PointOutT >NormalEstimation estimates local surface properties at each 3D point, such as surface normals and curvatures
pcl::NormalEstimationOMP< PointInT, PointOutT >NormalEstimationOMP estimates local surface properties at each 3D point, such as surface normals and curvatures, in parallel, using the OpenMP standard
pcl::NormalEstimationTBB< PointInT, PointOutT >NormalEstimationTBB estimates local surface properties at each 3D point, such as surface normals and curvatures, in parallel, using Intel's Threading Building Blocks library
pcl::traits::offset< PointT, Tag >
pcl::OrganizedDataIndex< PointT >OrganizedDataIndex is a type of spatial locator used to query organized datasets, such as point clouds acquired using dense stereo devices. The class best supports square data blocks for now in the form of (k*k+1)^2
pcl::PackedHSIComparison< PointT >A packed HSI specialization of the comparison object
pcl::PackedRGBComparison< PointT >A packed rgb specialization of the comparison object
pcl::NarfKeypoint::ParametersParameters used in this class
pcl::NarfDescriptor::Parameters
pcl::PosesFromMatches::ParametersParameters used in this class
pcl::RangeImageBorderExtractor::ParametersParameters used in this class
pcl::PolynomialCalculationsT< real >::ParametersParameters used in this class
pcl::PassThrough< PointT >PassThrough uses the base Filter class methods to pass through all data that satisfies the user given constraints
pcl::PassThrough< sensor_msgs::PointCloud2 >PassThrough uses the base Filter class methods to pass through all data that satisfies the user given constraints
pcl::PCDReaderPoint Cloud Data (PCD) file format reader
pcl::PCDWriterPoint Cloud Data (PCD) file format writer
pcl::PCLBase< PointT >PCL base class. Implements methods that are used by all PCL objects
pcl::PCLBase< sensor_msgs::PointCloud2 >
pcl::PCLExceptionA base class for all pcl exceptions which inherits from std::runtime_error
pcl::PFHEstimation< PointInT, PointNT, PointOutT >PFHEstimation estimates the Point Feature Histogram (PFH) descriptor for a given point cloud dataset containing points and normals
pcl::PFHSignature125
pcl::PiecewiseLinearFunctionThis provides functionalities to efficiently return values for piecewise linear function
pcl::traits::POD< PointT >
pcl::PointCloud< PointT >
sensor_msgs::PointCloud2_< ContainerAllocator >
pcl::PointCorrespondenceRepresentation of a (possible) correspondence between two points in two different coordinate frames (e.g. from feature matching)
pcl::PointCorrespondence3DRepresentation of a (possible) correspondence between two 3D points in two different coordinate frames (e.g. from feature matching)
pcl::PointCorrespondence6DRepresentation of a (possible) correspondence between two points (e.g. from feature matching), that encode complete 6DOF transoformations
pcl::PointDataAtOffset< PointT >A datatype that enables type-correct comparisons
sensor_msgs::PointField_< ContainerAllocator >
pcl::msg::_PointIndices::PointIndices
pcl::PointIndices_< ContainerAllocator >
pcl::PointNormal
pcl::PointRepresentation< PointT >PointRepresentation provides a set of methods for converting a point structs/object into an n-dimensional vector
pcl::PointSurfel
pcl::PointWithRange
pcl::PointWithScale
pcl::PointWithViewpoint
pcl::PointXY
pcl::PointXYZ
PointXYZFPFH33
pcl::PointXYZI
pcl::PointXYZINormal
pcl::PointXYZRGB
pcl::PointXYZRGBA
pcl::PointXYZRGBNormal
pcl::msg::_PolygonMesh::PolygonMesh
pcl::PolygonMesh_< ContainerAllocator >
pcl::PolynomialCalculationsT< real >This provides some functionality for polynomials, like finding roots or approximating bivariate polynomials
pcl::PosesFromMatches::PoseEstimateA result of the pose estimation process
pcl::PosesFromMatchesCalculate 3D transformation based on point correspondencdes
pcl::PrincipalCurvatures
pcl::PrincipalCurvaturesEstimation< PointInT, PointNT, PointOutT >PrincipalCurvaturesEstimation estimates the directions (eigenvectors) and magnitudes (eigenvalues) of principal surface curvatures for a given point cloud dataset containing points and normals
pcl::PrincipalRadiiRSD
ros::message_operations::Printer< ::pcl::ModelCoefficients_< ContainerAllocator > >
ros::message_operations::Printer< ::pcl::PointIndices_< ContainerAllocator > >
ros::message_operations::Printer< ::pcl::PolygonMesh_< ContainerAllocator > >
ros::message_operations::Printer< ::pcl::Vertices_< ContainerAllocator > >
pcl::ProgressiveSampleConsensus< PointT >RandomSampleConsensus represents an implementation of the RANSAC (RAndom SAmple Consensus) algorithm, as described in: "Matching with PROSAC – Progressive Sample Consensus", Chum, O. and Matas, J.G., CVPR, I: 220-226 2005
pcl::ProjectInliers< PointT >ProjectInliers uses a model and a set of inlier indices from a PointCloud to project them into a separate PointCloud
pcl::ProjectInliers< sensor_msgs::PointCloud2 >ProjectInliers uses a model and a set of inlier indices from a PointCloud to project them into a separate PointCloud
pcl::RadiusOutlierRemoval< PointT >RadiusOutlierRemoval is a simple filter that removes outliers if the number of neighbors in a certain search radius is smaller than a given K
pcl::RadiusOutlierRemoval< sensor_msgs::PointCloud2 >RadiusOutlierRemoval is a simple filter that removes outliers if the number of neighbors in a certain search radius is smaller than a given K
pcl::RandomizedMEstimatorSampleConsensus< PointT >RandomizedMEstimatorSampleConsensus represents an implementation of the RMSAC (Randomized M-estimator SAmple Consensus) algorithm, which basically adds a Td,d test (see RandomizedRandomSampleConsensus) to an MSAC estimator (see MEstimatorSampleConsensus)
pcl::RandomizedRandomSampleConsensus< PointT >RandomizedRandomSampleConsensus represents an implementation of the RRANSAC (Randomized RAndom SAmple Consensus), as described in "Randomized RANSAC with Td,d test", O. Chum and J. Matas, Proc. British Machine Vision Conf. (BMVC '02), vol. 2, BMVA, pp. 448-457, 2002
pcl::RandomSampleConsensus< PointT >RandomSampleConsensus represents an implementation of the RANSAC (RAndom SAmple Consensus) algorithm, as described in: "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography", Martin A. Fischler and Robert C. Bolles, Comm. Of the ACM 24: 381–395, June 1981
pcl::RangeImageRangeImage is derived from pcl/PointCloud and provides functionalities with focus on situations where a 3D scene was captured from a specific view point
pcl::RangeImageBorderExtractorExtract obstacle borders from range images, meaning positions where there is a transition from foreground to background
pcl::RangeImagePlanarRangeImagePlanar is derived from the original range image and differs from it because it's not a spherical projection, but using a projection plane (as normal cameras do), therefore being better applicable for range sensors that already provide a range image by themselves (stereo cameras, kinect, ToF-cameras), so that a conversion to point cloud and then to a spherical range image becomes unnecessary
sensor_msgs::RegionOfInterest_< ContainerAllocator >
pcl::Registration< PointSource, PointTarget >Registration represents the base registration class. All 3D registration methods should inherit from this class
RegistrationWrapper< PointSource, PointTarget >
pcl::RIFTEstimation< PointInT, GradientT, PointOutT >RIFTEstimation estimates the Rotation Invariant Feature Transform descriptors for a given point cloud dataset containing points and intensity. For more information about the RIFT descriptor, see:
pcl::RSDEstimation< PointInT, PointNT, PointOutT >RSDEstimation estimates the Radius-based Surface Descriptor (minimal and maximal radius of the local surface's curves) for a given point cloud dataset containing points and normals
pcl::SACSegmentation< PointT >SACSegmentation represents the Nodelet segmentation class for Sample Consensus methods and models, in the sense that it just creates a Nodelet wrapper for generic-purpose SAC-based segmentation
pcl::SACSegmentationFromNormals< PointT, PointNT >SACSegmentationFromNormals represents the PCL nodelet segmentation class for Sample Consensus methods and models that require the use of surface normals for estimation
pcl::SampleConsensus< T >SampleConsensus represents the base class. All sample consensus methods must inherit from this class
pcl::SampleConsensusInitialAlignment< PointSource, PointTarget, FeatureT >SampleConsensusInitialAlignment is an implementation of the initial alignment algorithm described in section IV of "Fast Point Feature Histograms (FPFH) for 3D Registration," Rusu et al
pcl::SampleConsensusModel< PointT >SampleConsensusModel represents the base model class. All sample consensus models must inherit from this class
pcl::SampleConsensusModelCircle2D< PointT >SampleConsensusModelCircle2D defines a model for 2D circle segmentation on the X-Y plane
pcl::SampleConsensusModelCylinder< PointT, PointNT >SampleConsensusModelCylinder defines a model for 3D cylinder segmentation
pcl::SampleConsensusModelFromNormals< PointT, PointNT >SampleConsensusModelFromNormals represents the base model class for models that require the use of surface normals for estimation
pcl::SampleConsensusModelLine< PointT >SampleConsensusModelLine defines a model for 3D line segmentation
pcl::SampleConsensusModelNormalParallelPlane< PointT, PointNT >SampleConsensusModelNormalParallelPlane defines a model for 3D plane segmentation using additional surface normal constraints. The plane must lie parallel to a user-specified axis
pcl::SampleConsensusModelNormalPlane< PointT, PointNT >SampleConsensusModelNormalPlane defines a model for 3D plane segmentation using additional surface normal constraints
pcl::SampleConsensusModelParallelLine< PointT >SampleConsensusModelParallelLine defines a model for 3D line segmentation using additional angular constraints
pcl::SampleConsensusModelParallelPlane< PointT >SampleConsensusModelParallelPlane defines a model for 3D plane segmentation using additional angular constraints. The plane must be parallel to a user-specified axis within a user-specified angle threshold
pcl::SampleConsensusModelPerpendicularPlane< PointT >SampleConsensusModelPerpendicularPlane defines a model for 3D plane segmentation using additional angular constraints. The plane must be perpendicular to a user-specified axis, up to a user-specified angle threshold
pcl::SampleConsensusModelPlane< PointT >SampleConsensusModelPlane defines a model for 3D plane segmentation
pcl::SampleConsensusModelRegistration< PointT >SampleConsensusModelRegistration defines a model for Point-To-Point registration outlier rejection
pcl::SampleConsensusModelSphere< PointT >SampleConsensusModelSphere defines a model for 3D sphere segmentation
pcl::ScopeTimeClass to measure the time spent in a scope
pcl::SegmentDifferences< PointT >SegmentDifferences obtains the difference between two spatially aligned point clouds and returns the difference between them for a maximum given distance threshold
ros::serialization::Serializer< ::pcl::ModelCoefficients_< ContainerAllocator > >
ros::serialization::Serializer< ::pcl::PointIndices_< ContainerAllocator > >
ros::serialization::Serializer< ::pcl::PolygonMesh_< ContainerAllocator > >
ros::serialization::Serializer< ::pcl::Vertices_< ContainerAllocator > >
pcl::RangeImageBorderExtractor::ShadowBorderIndicesStores the indices of the shadow border corresponding to obstacle borders
pcl::SIFTKeypoint< PointInT, PointOutT >SIFTKeypoint detects the Scale Invariant Feature Transform keypoints for a given point cloud dataset containing points and intensity. This implementation adapts the original algorithm from images to point clouds. For more information about the image-based SIFT interest operator, see:
pcl::registration::sortCorrespondencesByDistance
pcl::registration::sortCorrespondencesByMatchIndex
pcl::registration::sortCorrespondencesByMatchIndexAndDistance
pcl::registration::sortCorrespondencesByQueryIndex
pcl::registration::sortCorrespondencesByQueryIndexAndDistance
pcl::StatisticalOutlierRemoval< PointT >StatisticalOutlierRemoval uses point neighborhood statistics to filter outlier data. For more information check:
pcl::StatisticalOutlierRemoval< sensor_msgs::PointCloud2 >StatisticalOutlierRemoval uses point neighborhood statistics to filter outlier data. For more information check:
pcl::SurfaceReconstruction< PointInT >SurfaceReconstruction represents the base surface reconstruction class
pcl::TBB_NormalEstimationTBB< PointInT, PointOutT >
pcl::registration::TransformationEstimation< PointSource, PointTarget >
pcl::registration::TransformationEstimationSVD< PointSource, PointTarget >
pcl::TransformationFromCorrespondencesCalculates a transformation based on corresponding 3D points
pcl::VectorAverage< real, dimension >Calculates the weighted average and the covariance matrix
pcl::msg::_Vertices::Vertices
pcl::Vertices_< ContainerAllocator >
pcl::VFHEstimation< PointInT, PointNT, PointOutT >VFHEstimation estimates the Viewpoint Feature Histogram (VFH) descriptor for a given point cloud dataset containing points and normals
pcl::VFHSignature308
pcl::View< PointT >
pcl::VoxelGrid< PointT >VoxelGrid assembles a local 3D grid over a given PointCloud, and downsamples + filters the data
pcl::VoxelGrid< sensor_msgs::PointCloud2 >VoxelGrid assembles a local 3D grid over a given PointCloud, and downsamples + filters the data
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines


pcl
Author(s): See http://pcl.ros.org/authors for the complete list of authors.
autogenerated on Fri Jan 11 09:57:10 2013