pcl::EuclideanClusterExtraction< PointT > Class Template Reference

EuclideanClusterExtraction represents a segmentation class for cluster extraction in an Euclidean sense. More...

#include <extract_clusters.h>

Inheritance diagram for pcl::EuclideanClusterExtraction< PointT >:
Inheritance graph
[legend]

List of all members.

Public Types

typedef pcl::KdTree< PointT > KdTree
typedef pcl::KdTree< PointT >::Ptr KdTreePtr
typedef pcl::PointCloud< PointT > PointCloud
typedef PointCloud::ConstPtr PointCloudConstPtr
typedef PointCloud::Ptr PointCloudPtr
typedef PointIndices::ConstPtr PointIndicesConstPtr
typedef PointIndices::Ptr PointIndicesPtr

Public Member Functions

 EuclideanClusterExtraction ()
 Empty constructor.
void extract (std::vector< PointIndices > &clusters)
 Cluster extraction in a PointCloud given by <setInputCloud (), setIndices ()>
double getClusterTolerance ()
 Get the spatial cluster tolerance as a measure in the L2 Euclidean space.
int getMaxClusterSize ()
 Get the maximum number of points that a cluster needs to contain in order to be considered valid.
int getMinClusterSize ()
 Get the minimum number of points that a cluster needs to contain in order to be considered valid.
KdTreePtr getSearchMethod ()
 Get a pointer to the search method used.
int getSpatialLocator ()
 Get the spatial locator type used.
void setClusterTolerance (double tolerance)
 Set the spatial cluster tolerance as a measure in the L2 Euclidean space.
void setMaxClusterSize (int max_cluster_size)
 Set the maximum number of points that a cluster needs to contain in order to be considered valid.
void setMinClusterSize (int min_cluster_size)
 Set the minimum number of points that a cluster needs to contain in order to be considered valid.
void setSearchMethod (const KdTreePtr &tree)
 Provide a pointer to the search object.
void setSpatialLocator (int locator)
 Set the spatial locator type to use.

Protected Member Functions

virtual std::string getClassName () const
 Class getName method.

Protected Attributes

double cluster_tolerance_
 The spatial cluster tolerance as a measure in the L2 Euclidean space.
int max_pts_per_cluster_
 The maximum number of points that a cluster needs to contain in order to be considered valid (default = MAXINT).
int min_pts_per_cluster_
 The minimum number of points that a cluster needs to contain in order to be considered valid (default = 1).
int spatial_locator_
 Parameter for the spatial locator tree. By convention, the values represent: 0: ANN (Approximate Nearest Neigbor library) kd-tree 1: FLANN (Fast Library for Approximate Nearest Neighbors) kd-tree 2: Organized spatial dataset index.
KdTreePtr tree_
 A pointer to the spatial search object.

Private Types

typedef PCLBase< PointT > BasePCLBase

Detailed Description

template<typename PointT>
class pcl::EuclideanClusterExtraction< PointT >

EuclideanClusterExtraction represents a segmentation class for cluster extraction in an Euclidean sense.

Author:
Radu Bogdan Rusu

Definition at line 279 of file extract_clusters.h.


Member Typedef Documentation

template<typename PointT >
typedef PCLBase<PointT> pcl::EuclideanClusterExtraction< PointT >::BasePCLBase [private]

Definition at line 281 of file extract_clusters.h.

template<typename PointT >
typedef pcl::KdTree<PointT> pcl::EuclideanClusterExtraction< PointT >::KdTree

Definition at line 288 of file extract_clusters.h.

template<typename PointT >
typedef pcl::KdTree<PointT>::Ptr pcl::EuclideanClusterExtraction< PointT >::KdTreePtr

Definition at line 289 of file extract_clusters.h.

template<typename PointT >
typedef pcl::PointCloud<PointT> pcl::EuclideanClusterExtraction< PointT >::PointCloud

Reimplemented from pcl::PCLBase< PointT >.

Definition at line 284 of file extract_clusters.h.

template<typename PointT >
typedef PointCloud::ConstPtr pcl::EuclideanClusterExtraction< PointT >::PointCloudConstPtr

Reimplemented from pcl::PCLBase< PointT >.

Definition at line 286 of file extract_clusters.h.

template<typename PointT >
typedef PointCloud::Ptr pcl::EuclideanClusterExtraction< PointT >::PointCloudPtr

Reimplemented from pcl::PCLBase< PointT >.

Definition at line 285 of file extract_clusters.h.

template<typename PointT >
typedef PointIndices::ConstPtr pcl::EuclideanClusterExtraction< PointT >::PointIndicesConstPtr

Reimplemented from pcl::PCLBase< PointT >.

Definition at line 292 of file extract_clusters.h.

template<typename PointT >
typedef PointIndices::Ptr pcl::EuclideanClusterExtraction< PointT >::PointIndicesPtr

Reimplemented from pcl::PCLBase< PointT >.

Definition at line 291 of file extract_clusters.h.


Constructor & Destructor Documentation

template<typename PointT >
pcl::EuclideanClusterExtraction< PointT >::EuclideanClusterExtraction (  )  [inline]

Empty constructor.

Definition at line 296 of file extract_clusters.h.


Member Function Documentation

template<typename PointT >
void pcl::EuclideanClusterExtraction< PointT >::extract ( std::vector< PointIndices > &  clusters  )  [inline]

Cluster extraction in a PointCloud given by <setInputCloud (), setIndices ()>

Parameters:
clusters the resultant point clusters

Definition at line 197 of file extract_clusters.hpp.

template<typename PointT >
virtual std::string pcl::EuclideanClusterExtraction< PointT >::getClassName (  )  const [inline, protected, virtual]

Class getName method.

Definition at line 370 of file extract_clusters.h.

template<typename PointT >
double pcl::EuclideanClusterExtraction< PointT >::getClusterTolerance (  )  [inline]

Get the spatial cluster tolerance as a measure in the L2 Euclidean space.

Definition at line 314 of file extract_clusters.h.

template<typename PointT >
int pcl::EuclideanClusterExtraction< PointT >::getMaxClusterSize (  )  [inline]

Get the maximum number of points that a cluster needs to contain in order to be considered valid.

Definition at line 330 of file extract_clusters.h.

template<typename PointT >
int pcl::EuclideanClusterExtraction< PointT >::getMinClusterSize (  )  [inline]

Get the minimum number of points that a cluster needs to contain in order to be considered valid.

Definition at line 322 of file extract_clusters.h.

template<typename PointT >
KdTreePtr pcl::EuclideanClusterExtraction< PointT >::getSearchMethod (  )  [inline]

Get a pointer to the search method used.

Definition at line 306 of file extract_clusters.h.

template<typename PointT >
int pcl::EuclideanClusterExtraction< PointT >::getSpatialLocator (  )  [inline]

Get the spatial locator type used.

Definition at line 342 of file extract_clusters.h.

template<typename PointT >
void pcl::EuclideanClusterExtraction< PointT >::setClusterTolerance ( double  tolerance  )  [inline]

Set the spatial cluster tolerance as a measure in the L2 Euclidean space.

Parameters:
tolerance the spatial cluster tolerance as a measure in the L2 Euclidean space

Definition at line 311 of file extract_clusters.h.

template<typename PointT >
void pcl::EuclideanClusterExtraction< PointT >::setMaxClusterSize ( int  max_cluster_size  )  [inline]

Set the maximum number of points that a cluster needs to contain in order to be considered valid.

Parameters:
max_cluster_size the maximum cluster size

Definition at line 327 of file extract_clusters.h.

template<typename PointT >
void pcl::EuclideanClusterExtraction< PointT >::setMinClusterSize ( int  min_cluster_size  )  [inline]

Set the minimum number of points that a cluster needs to contain in order to be considered valid.

Parameters:
min_cluster_size the minimum cluster size

Definition at line 319 of file extract_clusters.h.

template<typename PointT >
void pcl::EuclideanClusterExtraction< PointT >::setSearchMethod ( const KdTreePtr tree  )  [inline]

Provide a pointer to the search object.

Parameters:
tree a pointer to the spatial search object.

Definition at line 303 of file extract_clusters.h.

template<typename PointT >
void pcl::EuclideanClusterExtraction< PointT >::setSpatialLocator ( int  locator  )  [inline]

Set the spatial locator type to use.

Parameters:
locator the spatial locator type

Definition at line 340 of file extract_clusters.h.


Member Data Documentation

template<typename PointT >
double pcl::EuclideanClusterExtraction< PointT >::cluster_tolerance_ [protected]

The spatial cluster tolerance as a measure in the L2 Euclidean space.

Definition at line 361 of file extract_clusters.h.

template<typename PointT >
int pcl::EuclideanClusterExtraction< PointT >::max_pts_per_cluster_ [protected]

The maximum number of points that a cluster needs to contain in order to be considered valid (default = MAXINT).

Definition at line 367 of file extract_clusters.h.

template<typename PointT >
int pcl::EuclideanClusterExtraction< PointT >::min_pts_per_cluster_ [protected]

The minimum number of points that a cluster needs to contain in order to be considered valid (default = 1).

Definition at line 364 of file extract_clusters.h.

template<typename PointT >
int pcl::EuclideanClusterExtraction< PointT >::spatial_locator_ [protected]

Parameter for the spatial locator tree. By convention, the values represent: 0: ANN (Approximate Nearest Neigbor library) kd-tree 1: FLANN (Fast Library for Approximate Nearest Neighbors) kd-tree 2: Organized spatial dataset index.

Definition at line 358 of file extract_clusters.h.

template<typename PointT >
KdTreePtr pcl::EuclideanClusterExtraction< PointT >::tree_ [protected]

A pointer to the spatial search object.

Definition at line 351 of file extract_clusters.h.


The documentation for this class was generated from the following files:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines


pcl
Author(s): See http://pcl.ros.org/authors for the complete list of authors.
autogenerated on Fri Jan 11 09:57:17 2013