pcl::SACSegmentation< PointT > Class Template Reference

SACSegmentation represents the Nodelet segmentation class for Sample Consensus methods and models, in the sense that it just creates a Nodelet wrapper for generic-purpose SAC-based segmentation. More...

#include <sac_segmentation.h>

Inheritance diagram for pcl::SACSegmentation< PointT >:
Inheritance graph
[legend]

List of all members.

Public Types

typedef pcl::PointCloud< PointT > PointCloud
typedef PointCloud::ConstPtr PointCloudConstPtr
typedef PointCloud::Ptr PointCloudPtr
typedef SampleConsensusModel
< PointT >::Ptr 
SampleConsensusModelPtr
typedef SampleConsensus
< PointT >::Ptr 
SampleConsensusPtr

Public Member Functions

Eigen::Vector3f getAxis ()
 Get the axis along which we need to search for a model perpendicular to.
double getDistanceThreshold ()
 Get the distance to the model threshold.
double getEpsAngle ()
 Get the epsilon (delta) model angle threshold in radians.
int getMaxIterations ()
 Get maximum number of iterations before giving up.
SampleConsensusPtr getMethod ()
 Get a pointer to the SAC method used.
int getMethodType ()
 Get the type of sample consensus method used.
SampleConsensusModelPtr getModel ()
 Get a pointer to the SAC model used.
int getModelType ()
 Get the type of SAC model used.
bool getOptimizeCoefficients ()
 Get the coefficient refinement internal flag.
double getProbability ()
 Get the probability of choosing at least one sample free from outliers.
void getRadiusLimits (double &min_radius, double &max_radius)
 Get the minimum and maximum allowable radius limits for the model as set by the user.
 SACSegmentation ()
 Empty constructor.
virtual void segment (PointIndices &inliers, ModelCoefficients &model_coefficients)
 Base method for segmentation of a model in a PointCloud given by <setInputCloud (), setIndices ()>
void setAxis (const Eigen::Vector3f &ax)
 Set the axis along which we need to search for a model perpendicular to.
void setDistanceThreshold (double threshold)
 Distance to the model threshold (user given parameter).
void setEpsAngle (double ea)
 Set the angle epsilon (delta) threshold.
void setMaxIterations (int max_iterations)
 Set the maximum number of iterations before giving up.
void setMethodType (int method)
 The type of sample consensus method to use (user given parameter).
void setModelType (int model)
 The type of model to use (user given parameter).
void setOptimizeCoefficients (bool optimize)
 Set to true if a coefficient refinement is required.
void setProbability (double probability)
 Set the probability of choosing at least one sample free from outliers.
void setRadiusLimits (const double &min_radius, const double &max_radius)
 Set the minimum and maximum allowable radius limits for the model (applicable to models that estimate a radius).
virtual ~SACSegmentation ()
 Empty destructor.

Protected Member Functions

virtual std::string getClassName () const
 Class get name method.
virtual void initSAC (const int method_type)
 Initialize the Sample Consensus method and set its parameters.
virtual bool initSACModel (const int model_type)
 Initialize the Sample Consensus model and set its parameters.

Protected Attributes

Eigen::Vector3f axis_
 The axis along which we need to search for a model perpendicular to.
double eps_angle_
 The maximum allowed difference between the model normal and the given axis.
int max_iterations_
 Maximum number of iterations before giving up (user given parameter).
int method_type_
 The type of sample consensus method to use (user given parameter).
SampleConsensusModelPtr model_
 The model that needs to be segmented.
int model_type_
 The type of model to use (user given parameter).
bool optimize_coefficients_
 Set to true if a coefficient refinement is required.
double probability_
 Desired probability of choosing at least one sample free from outliers (user given parameter).
double radius_max_
double radius_min_
 The minimum and maximum radius limits for the model. Applicable to all models that estimate a radius.
SampleConsensusPtr sac_
 The sample consensus segmentation method.
double threshold_
 Distance to the model threshold (user given parameter).

Detailed Description

template<typename PointT>
class pcl::SACSegmentation< PointT >

SACSegmentation represents the Nodelet segmentation class for Sample Consensus methods and models, in the sense that it just creates a Nodelet wrapper for generic-purpose SAC-based segmentation.

Author:
Radu Bogdan Rusu

Definition at line 58 of file sac_segmentation.h.


Member Typedef Documentation

template<typename PointT >
typedef pcl::PointCloud<PointT> pcl::SACSegmentation< PointT >::PointCloud

Reimplemented from pcl::PCLBase< PointT >.

Reimplemented in pcl::SACSegmentationFromNormals< PointT, PointNT >.

Definition at line 67 of file sac_segmentation.h.

template<typename PointT >
typedef PointCloud::ConstPtr pcl::SACSegmentation< PointT >::PointCloudConstPtr

Reimplemented from pcl::PCLBase< PointT >.

Reimplemented in pcl::SACSegmentationFromNormals< PointT, PointNT >.

Definition at line 69 of file sac_segmentation.h.

template<typename PointT >
typedef PointCloud::Ptr pcl::SACSegmentation< PointT >::PointCloudPtr

Reimplemented from pcl::PCLBase< PointT >.

Reimplemented in pcl::SACSegmentationFromNormals< PointT, PointNT >.

Definition at line 68 of file sac_segmentation.h.

template<typename PointT >
typedef SampleConsensusModel<PointT>::Ptr pcl::SACSegmentation< PointT >::SampleConsensusModelPtr

Reimplemented in pcl::SACSegmentationFromNormals< PointT, PointNT >.

Definition at line 72 of file sac_segmentation.h.

template<typename PointT >
typedef SampleConsensus<PointT>::Ptr pcl::SACSegmentation< PointT >::SampleConsensusPtr

Reimplemented in pcl::SACSegmentationFromNormals< PointT, PointNT >.

Definition at line 71 of file sac_segmentation.h.


Constructor & Destructor Documentation

template<typename PointT >
pcl::SACSegmentation< PointT >::SACSegmentation (  )  [inline]

Empty constructor.

Definition at line 75 of file sac_segmentation.h.

template<typename PointT >
virtual pcl::SACSegmentation< PointT >::~SACSegmentation (  )  [inline, virtual]

Empty destructor.

Definition at line 84 of file sac_segmentation.h.


Member Function Documentation

template<typename PointT >
Eigen::Vector3f pcl::SACSegmentation< PointT >::getAxis (  )  [inline]

Get the axis along which we need to search for a model perpendicular to.

Definition at line 185 of file sac_segmentation.h.

template<typename PointT >
virtual std::string pcl::SACSegmentation< PointT >::getClassName (  )  const [inline, protected, virtual]

Class get name method.

Reimplemented in pcl::SACSegmentationFromNormals< PointT, PointNT >.

Definition at line 252 of file sac_segmentation.h.

template<typename PointT >
double pcl::SACSegmentation< PointT >::getDistanceThreshold (  )  [inline]

Get the distance to the model threshold.

Definition at line 121 of file sac_segmentation.h.

template<typename PointT >
double pcl::SACSegmentation< PointT >::getEpsAngle (  )  [inline]

Get the epsilon (delta) model angle threshold in radians.

Definition at line 195 of file sac_segmentation.h.

template<typename PointT >
int pcl::SACSegmentation< PointT >::getMaxIterations (  )  [inline]

Get maximum number of iterations before giving up.

Definition at line 131 of file sac_segmentation.h.

template<typename PointT >
SampleConsensusPtr pcl::SACSegmentation< PointT >::getMethod (  )  [inline]

Get a pointer to the SAC method used.

Definition at line 97 of file sac_segmentation.h.

template<typename PointT >
int pcl::SACSegmentation< PointT >::getMethodType (  )  [inline]

Get the type of sample consensus method used.

Definition at line 111 of file sac_segmentation.h.

template<typename PointT >
SampleConsensusModelPtr pcl::SACSegmentation< PointT >::getModel (  )  [inline]

Get a pointer to the SAC model used.

Definition at line 101 of file sac_segmentation.h.

template<typename PointT >
int pcl::SACSegmentation< PointT >::getModelType (  )  [inline]

Get the type of SAC model used.

Definition at line 93 of file sac_segmentation.h.

template<typename PointT >
bool pcl::SACSegmentation< PointT >::getOptimizeCoefficients (  )  [inline]

Get the coefficient refinement internal flag.

Definition at line 151 of file sac_segmentation.h.

template<typename PointT >
double pcl::SACSegmentation< PointT >::getProbability (  )  [inline]

Get the probability of choosing at least one sample free from outliers.

Definition at line 141 of file sac_segmentation.h.

template<typename PointT >
void pcl::SACSegmentation< PointT >::getRadiusLimits ( double &  min_radius,
double &  max_radius 
) [inline]

Get the minimum and maximum allowable radius limits for the model as set by the user.

Parameters:
min_radius the resultant minimum radius model
max_radius the resultant maximum radius model

Definition at line 171 of file sac_segmentation.h.

template<typename PointT >
void pcl::SACSegmentation< PointT >::initSAC ( const int  method_type  )  [inline, protected, virtual]

Initialize the Sample Consensus method and set its parameters.

Parameters:
method_type the type of SAC method to be used

Definition at line 240 of file sac_segmentation.hpp.

template<typename PointT >
bool pcl::SACSegmentation< PointT >::initSACModel ( const int  model_type  )  [inline, protected, virtual]

Initialize the Sample Consensus model and set its parameters.

Parameters:
model_type the type of SAC model that is to be used

Reimplemented in pcl::SACSegmentationFromNormals< PointT, PointNT >.

Definition at line 130 of file sac_segmentation.hpp.

template<typename PointT >
void pcl::SACSegmentation< PointT >::segment ( PointIndices inliers,
ModelCoefficients model_coefficients 
) [inline, virtual]

Base method for segmentation of a model in a PointCloud given by <setInputCloud (), setIndices ()>

Parameters:
inliers the resultant point indices that support the model found (inliers)
model_coefficients the resultant model coefficients

Definition at line 72 of file sac_segmentation.hpp.

template<typename PointT >
void pcl::SACSegmentation< PointT >::setAxis ( const Eigen::Vector3f &  ax  )  [inline]

Set the axis along which we need to search for a model perpendicular to.

Parameters:
ax the axis along which we need to search for a model perpendicular to

Definition at line 181 of file sac_segmentation.h.

template<typename PointT >
void pcl::SACSegmentation< PointT >::setDistanceThreshold ( double  threshold  )  [inline]

Distance to the model threshold (user given parameter).

Parameters:
threshold the distance threshold to use

Definition at line 117 of file sac_segmentation.h.

template<typename PointT >
void pcl::SACSegmentation< PointT >::setEpsAngle ( double  ea  )  [inline]

Set the angle epsilon (delta) threshold.

Parameters:
ea the maximum allowed difference between the model normal and the given axis in radians.

Definition at line 191 of file sac_segmentation.h.

template<typename PointT >
void pcl::SACSegmentation< PointT >::setMaxIterations ( int  max_iterations  )  [inline]

Set the maximum number of iterations before giving up.

Parameters:
max_iterations the maximum number of iterations the sample consensus method will run

Definition at line 127 of file sac_segmentation.h.

template<typename PointT >
void pcl::SACSegmentation< PointT >::setMethodType ( int  method  )  [inline]

The type of sample consensus method to use (user given parameter).

Parameters:
method the method type (check method_types.h)

Definition at line 107 of file sac_segmentation.h.

template<typename PointT >
void pcl::SACSegmentation< PointT >::setModelType ( int  model  )  [inline]

The type of model to use (user given parameter).

Parameters:
model the model type (check model_types.h)

Definition at line 89 of file sac_segmentation.h.

template<typename PointT >
void pcl::SACSegmentation< PointT >::setOptimizeCoefficients ( bool  optimize  )  [inline]

Set to true if a coefficient refinement is required.

Parameters:
optimize true for enabling model coefficient refinement, false otherwise

Definition at line 147 of file sac_segmentation.h.

template<typename PointT >
void pcl::SACSegmentation< PointT >::setProbability ( double  probability  )  [inline]

Set the probability of choosing at least one sample free from outliers.

Parameters:
probability the model fitting probability

Definition at line 137 of file sac_segmentation.h.

template<typename PointT >
void pcl::SACSegmentation< PointT >::setRadiusLimits ( const double &  min_radius,
const double &  max_radius 
) [inline]

Set the minimum and maximum allowable radius limits for the model (applicable to models that estimate a radius).

Parameters:
min_radius the minimum radius model
max_radius the maximum radius model
Todo:
change this to set limits on the entire model

Definition at line 160 of file sac_segmentation.h.


Member Data Documentation

template<typename PointT >
Eigen::Vector3f pcl::SACSegmentation< PointT >::axis_ [protected]

The axis along which we need to search for a model perpendicular to.

Definition at line 242 of file sac_segmentation.h.

template<typename PointT >
double pcl::SACSegmentation< PointT >::eps_angle_ [protected]

The maximum allowed difference between the model normal and the given axis.

Definition at line 239 of file sac_segmentation.h.

template<typename PointT >
int pcl::SACSegmentation< PointT >::max_iterations_ [protected]

Maximum number of iterations before giving up (user given parameter).

Definition at line 245 of file sac_segmentation.h.

template<typename PointT >
int pcl::SACSegmentation< PointT >::method_type_ [protected]

The type of sample consensus method to use (user given parameter).

Definition at line 227 of file sac_segmentation.h.

template<typename PointT >
SampleConsensusModelPtr pcl::SACSegmentation< PointT >::model_ [protected]

The model that needs to be segmented.

Definition at line 218 of file sac_segmentation.h.

template<typename PointT >
int pcl::SACSegmentation< PointT >::model_type_ [protected]

The type of model to use (user given parameter).

Definition at line 224 of file sac_segmentation.h.

template<typename PointT >
bool pcl::SACSegmentation< PointT >::optimize_coefficients_ [protected]

Set to true if a coefficient refinement is required.

Definition at line 233 of file sac_segmentation.h.

template<typename PointT >
double pcl::SACSegmentation< PointT >::probability_ [protected]

Desired probability of choosing at least one sample free from outliers (user given parameter).

Definition at line 248 of file sac_segmentation.h.

template<typename PointT >
double pcl::SACSegmentation< PointT >::radius_max_ [protected]

Definition at line 236 of file sac_segmentation.h.

template<typename PointT >
double pcl::SACSegmentation< PointT >::radius_min_ [protected]

The minimum and maximum radius limits for the model. Applicable to all models that estimate a radius.

Definition at line 236 of file sac_segmentation.h.

template<typename PointT >
SampleConsensusPtr pcl::SACSegmentation< PointT >::sac_ [protected]

The sample consensus segmentation method.

Definition at line 221 of file sac_segmentation.h.

template<typename PointT >
double pcl::SACSegmentation< PointT >::threshold_ [protected]

Distance to the model threshold (user given parameter).

Definition at line 230 of file sac_segmentation.h.


The documentation for this class was generated from the following files:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines


pcl
Author(s): See http://pcl.ros.org/authors for the complete list of authors.
autogenerated on Fri Jan 11 09:57:21 2013