Program Listing for File so3.hpp
↰ Return to documentation for file (sophus/so3.hpp
)
#pragma once
#include "rotation_matrix.hpp"
#include "so2.hpp"
#include "types.hpp"
// Include only the selective set of Eigen headers that we need.
// This helps when using Sophus with unusual compilers, like nvcc.
#include <Eigen/src/Geometry/OrthoMethods.h>
#include <Eigen/src/Geometry/Quaternion.h>
#include <Eigen/src/Geometry/RotationBase.h>
namespace Sophus {
template <class Scalar_, int Options = 0>
class SO3;
using SO3d = SO3<double>;
using SO3f = SO3<float>;
} // namespace Sophus
namespace Eigen {
namespace internal {
template <class Scalar_, int Options_>
struct traits<Sophus::SO3<Scalar_, Options_>> {
static constexpr int Options = Options_;
using Scalar = Scalar_;
using QuaternionType = Eigen::Quaternion<Scalar, Options>;
};
template <class Scalar_, int Options_>
struct traits<Map<Sophus::SO3<Scalar_>, Options_>>
: traits<Sophus::SO3<Scalar_, Options_>> {
static constexpr int Options = Options_;
using Scalar = Scalar_;
using QuaternionType = Map<Eigen::Quaternion<Scalar>, Options>;
};
template <class Scalar_, int Options_>
struct traits<Map<Sophus::SO3<Scalar_> const, Options_>>
: traits<Sophus::SO3<Scalar_, Options_> const> {
static constexpr int Options = Options_;
using Scalar = Scalar_;
using QuaternionType = Map<Eigen::Quaternion<Scalar> const, Options>;
};
} // namespace internal
} // namespace Eigen
namespace Sophus {
template <class Derived>
class SO3Base {
public:
static constexpr int Options = Eigen::internal::traits<Derived>::Options;
using Scalar = typename Eigen::internal::traits<Derived>::Scalar;
using QuaternionType =
typename Eigen::internal::traits<Derived>::QuaternionType;
using QuaternionTemporaryType = Eigen::Quaternion<Scalar, Options>;
static int constexpr DoF = 3;
static int constexpr num_parameters = 4;
static int constexpr N = 3;
static int constexpr Dim = 3;
using Transformation = Matrix<Scalar, N, N>;
using Point = Vector3<Scalar>;
using HomogeneousPoint = Vector4<Scalar>;
using Line = ParametrizedLine3<Scalar>;
using Hyperplane = Hyperplane3<Scalar>;
using Tangent = Vector<Scalar, DoF>;
using Adjoint = Matrix<Scalar, DoF, DoF>;
struct TangentAndTheta {
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
Tangent tangent;
Scalar theta;
};
template <typename OtherDerived>
using ReturnScalar = typename Eigen::ScalarBinaryOpTraits<
Scalar, typename OtherDerived::Scalar>::ReturnType;
template <typename OtherDerived>
using SO3Product = SO3<ReturnScalar<OtherDerived>>;
template <typename PointDerived>
using PointProduct = Vector3<ReturnScalar<PointDerived>>;
template <typename HPointDerived>
using HomogeneousPointProduct = Vector4<ReturnScalar<HPointDerived>>;
//
//
SOPHUS_FUNC Adjoint Adj() const { return matrix(); }
template <class S = Scalar>
SOPHUS_FUNC enable_if_t<std::is_floating_point<S>::value, S> angleX() const {
Sophus::Matrix3<Scalar> R = matrix();
Sophus::Matrix2<Scalar> Rx = R.template block<2, 2>(1, 1);
return SO2<Scalar>(makeRotationMatrix(Rx)).log();
}
template <class S = Scalar>
SOPHUS_FUNC enable_if_t<std::is_floating_point<S>::value, S> angleY() const {
Sophus::Matrix3<Scalar> R = matrix();
Sophus::Matrix2<Scalar> Ry;
// clang-format off
Ry <<
R(0, 0), R(2, 0),
R(0, 2), R(2, 2);
// clang-format on
return SO2<Scalar>(makeRotationMatrix(Ry)).log();
}
template <class S = Scalar>
SOPHUS_FUNC enable_if_t<std::is_floating_point<S>::value, S> angleZ() const {
Sophus::Matrix3<Scalar> R = matrix();
Sophus::Matrix2<Scalar> Rz = R.template block<2, 2>(0, 0);
return SO2<Scalar>(makeRotationMatrix(Rz)).log();
}
template <class NewScalarType>
SOPHUS_FUNC SO3<NewScalarType> cast() const {
return SO3<NewScalarType>(unit_quaternion().template cast<NewScalarType>());
}
SOPHUS_FUNC Scalar* data() {
return unit_quaternion_nonconst().coeffs().data();
}
SOPHUS_FUNC Scalar const* data() const {
return unit_quaternion().coeffs().data();
}
SOPHUS_FUNC Matrix<Scalar, num_parameters, DoF> Dx_this_mul_exp_x_at_0()
const {
Matrix<Scalar, num_parameters, DoF> J;
Eigen::Quaternion<Scalar> const q = unit_quaternion();
Scalar const c0 = Scalar(0.5) * q.w();
Scalar const c1 = Scalar(0.5) * q.z();
Scalar const c2 = -c1;
Scalar const c3 = Scalar(0.5) * q.y();
Scalar const c4 = Scalar(0.5) * q.x();
Scalar const c5 = -c4;
Scalar const c6 = -c3;
J(0, 0) = c0;
J(0, 1) = c2;
J(0, 2) = c3;
J(1, 0) = c1;
J(1, 1) = c0;
J(1, 2) = c5;
J(2, 0) = c6;
J(2, 1) = c4;
J(2, 2) = c0;
J(3, 0) = c5;
J(3, 1) = c6;
J(3, 2) = c2;
return J;
}
SOPHUS_FUNC Matrix<Scalar, DoF, num_parameters> Dx_log_this_inv_by_x_at_this()
const {
auto& q = unit_quaternion();
Matrix<Scalar, DoF, num_parameters> J;
// clang-format off
J << q.w(), q.z(), -q.y(), -q.x(),
-q.z(), q.w(), q.x(), -q.y(),
q.y(), -q.x(), q.w(), -q.z();
// clang-format on
return J * Scalar(2.);
}
SOPHUS_FUNC Sophus::Vector<Scalar, num_parameters> params() const {
return unit_quaternion().coeffs();
}
SOPHUS_FUNC SO3<Scalar> inverse() const {
return SO3<Scalar>(unit_quaternion().conjugate());
}
SOPHUS_FUNC Tangent log() const { return logAndTheta().tangent; }
SOPHUS_FUNC TangentAndTheta logAndTheta() const {
TangentAndTheta J;
using std::abs;
using std::atan2;
using std::sqrt;
Scalar squared_n = unit_quaternion().vec().squaredNorm();
Scalar w = unit_quaternion().w();
Scalar two_atan_nbyw_by_n;
if (squared_n <
Constants<Scalar>::epsilon() * Constants<Scalar>::epsilon()) {
// If quaternion is normalized and n=0, then w should be 1;
// w=0 should never happen here!
SOPHUS_ENSURE(abs(w) >= Constants<Scalar>::epsilon(),
"Quaternion ({}) should be normalized!",
SOPHUS_FMT_ARG(unit_quaternion().coeffs().transpose()));
Scalar squared_w = w * w;
two_atan_nbyw_by_n =
Scalar(2) / w - Scalar(2.0 / 3.0) * (squared_n) / (w * squared_w);
J.theta = Scalar(2) * squared_n / w;
} else {
Scalar n = sqrt(squared_n);
// w < 0 ==> cos(theta/2) < 0 ==> theta > pi
//
// By convention, the condition |theta| < pi is imposed by wrapping theta
// to pi; The wrap operation can be folded inside evaluation of atan2
//
// theta - pi = atan(sin(theta - pi), cos(theta - pi))
// = atan(-sin(theta), -cos(theta))
//
Scalar atan_nbyw =
(w < Scalar(0)) ? Scalar(atan2(-n, -w)) : Scalar(atan2(n, w));
two_atan_nbyw_by_n = Scalar(2) * atan_nbyw / n;
J.theta = two_atan_nbyw_by_n * n;
}
J.tangent = two_atan_nbyw_by_n * unit_quaternion().vec();
return J;
}
SOPHUS_FUNC void normalize() {
Scalar length = unit_quaternion_nonconst().norm();
SOPHUS_ENSURE(
length >= Constants<Scalar>::epsilon(),
"Quaternion ({}) should not be close to zero!",
SOPHUS_FMT_ARG(unit_quaternion_nonconst().coeffs().transpose()));
unit_quaternion_nonconst().coeffs() /= length;
}
SOPHUS_FUNC Transformation matrix() const {
return unit_quaternion().toRotationMatrix();
}
template <class OtherDerived>
SOPHUS_FUNC SO3Base<Derived>& operator=(SO3Base<OtherDerived> const& other) {
unit_quaternion_nonconst() = other.unit_quaternion();
return *this;
}
template <typename QuaternionProductType, typename QuaternionTypeA,
typename QuaternionTypeB>
SOPHUS_FUNC static QuaternionProductType QuaternionProduct(
const QuaternionTypeA& a, const QuaternionTypeB& b) {
return QuaternionProductType(
a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x());
}
template <typename OtherDerived>
SOPHUS_FUNC SO3Product<OtherDerived> operator*(
SO3Base<OtherDerived> const& other) const {
using QuaternionProductType =
typename SO3Product<OtherDerived>::QuaternionType;
const QuaternionType& a = unit_quaternion();
const typename OtherDerived::QuaternionType& b = other.unit_quaternion();
return SO3Product<OtherDerived>(
QuaternionProduct<QuaternionProductType>(a, b));
}
template <typename PointDerived,
typename = typename std::enable_if<
IsFixedSizeVector<PointDerived, 3>::value>::type>
SOPHUS_FUNC PointProduct<PointDerived> operator*(
Eigen::MatrixBase<PointDerived> const& p) const {
const QuaternionType& q = unit_quaternion();
PointProduct<PointDerived> uv = q.vec().cross(p);
uv += uv;
return p + q.w() * uv + q.vec().cross(uv);
}
template <typename HPointDerived,
typename = typename std::enable_if<
IsFixedSizeVector<HPointDerived, 4>::value>::type>
SOPHUS_FUNC HomogeneousPointProduct<HPointDerived> operator*(
Eigen::MatrixBase<HPointDerived> const& p) const {
const auto rp = *this * p.template head<3>();
return HomogeneousPointProduct<HPointDerived>(rp(0), rp(1), rp(2), p(3));
}
SOPHUS_FUNC Line operator*(Line const& l) const {
return Line((*this) * l.origin(), (*this) * l.direction());
}
SOPHUS_FUNC Hyperplane operator*(Hyperplane const& p) const {
return Hyperplane((*this) * p.normal(), p.offset());
}
template <typename OtherDerived,
typename = typename std::enable_if<
std::is_same<Scalar, ReturnScalar<OtherDerived>>::value>::type>
SOPHUS_FUNC SO3Base<Derived>& operator*=(SO3Base<OtherDerived> const& other) {
*static_cast<Derived*>(this) = *this * other;
return *this;
}
SOPHUS_FUNC void setQuaternion(Eigen::Quaternion<Scalar> const& quaternion) {
unit_quaternion_nonconst() = quaternion;
normalize();
}
SOPHUS_FUNC QuaternionType const& unit_quaternion() const {
return static_cast<Derived const*>(this)->unit_quaternion();
}
private:
SOPHUS_FUNC QuaternionType& unit_quaternion_nonconst() {
return static_cast<Derived*>(this)->unit_quaternion_nonconst();
}
};
template <class Scalar_, int Options>
class SO3 : public SO3Base<SO3<Scalar_, Options>> {
public:
using Base = SO3Base<SO3<Scalar_, Options>>;
static int constexpr DoF = Base::DoF;
static int constexpr num_parameters = Base::num_parameters;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
using QuaternionMember = Eigen::Quaternion<Scalar, Options>;
friend class SO3Base<SO3<Scalar, Options>>;
using Base::operator=;
SOPHUS_FUNC SO3& operator=(SO3 const& other) = default;
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
SOPHUS_FUNC SO3()
: unit_quaternion_(Scalar(1), Scalar(0), Scalar(0), Scalar(0)) {}
SOPHUS_FUNC SO3(SO3 const& other) = default;
template <class OtherDerived>
SOPHUS_FUNC SO3(SO3Base<OtherDerived> const& other)
: unit_quaternion_(other.unit_quaternion()) {}
SOPHUS_FUNC SO3(Transformation const& R) : unit_quaternion_(R) {
SOPHUS_ENSURE(isOrthogonal(R), "R is not orthogonal:\n {}",
SOPHUS_FMT_ARG(R * R.transpose()));
SOPHUS_ENSURE(R.determinant() > Scalar(0), "det(R) is not positive: {}",
SOPHUS_FMT_ARG(R.determinant()));
}
template <class D>
SOPHUS_FUNC explicit SO3(Eigen::QuaternionBase<D> const& quat)
: unit_quaternion_(quat) {
static_assert(
std::is_same<typename Eigen::QuaternionBase<D>::Scalar, Scalar>::value,
"Input must be of same scalar type");
Base::normalize();
}
SOPHUS_FUNC QuaternionMember const& unit_quaternion() const {
return unit_quaternion_;
}
SOPHUS_FUNC static Sophus::Matrix<Scalar, DoF, DoF> leftJacobian(
Tangent const& omega, optional<Scalar> const& theta_o = nullopt) {
using std::cos;
using std::sin;
using std::sqrt;
Scalar const theta_sq = theta_o ? *theta_o * *theta_o : omega.squaredNorm();
Matrix3<Scalar> const Omega = SO3<Scalar>::hat(omega);
Matrix3<Scalar> const Omega_sq = Omega * Omega;
Matrix3<Scalar> V;
if (theta_sq <
Constants<Scalar>::epsilon() * Constants<Scalar>::epsilon()) {
V = Matrix3<Scalar>::Identity() + Scalar(0.5) * Omega;
} else {
Scalar theta = theta_o ? *theta_o : sqrt(theta_sq);
V = Matrix3<Scalar>::Identity() +
(Scalar(1) - cos(theta)) / theta_sq * Omega +
(theta - sin(theta)) / (theta_sq * theta) * Omega_sq;
}
return V;
}
SOPHUS_FUNC static Sophus::Matrix<Scalar, DoF, DoF> leftJacobianInverse(
Tangent const& omega, optional<Scalar> const& theta_o = nullopt) {
using std::cos;
using std::sin;
using std::sqrt;
Scalar const theta_sq = theta_o ? *theta_o * *theta_o : omega.squaredNorm();
Matrix3<Scalar> const Omega = SO3<Scalar>::hat(omega);
Matrix3<Scalar> V_inv;
if (theta_sq <
Constants<Scalar>::epsilon() * Constants<Scalar>::epsilon()) {
V_inv = Matrix3<Scalar>::Identity() - Scalar(0.5) * Omega +
Scalar(1. / 12.) * (Omega * Omega);
} else {
Scalar const theta = theta_o ? *theta_o : sqrt(theta_sq);
Scalar const half_theta = Scalar(0.5) * theta;
V_inv = Matrix3<Scalar>::Identity() - Scalar(0.5) * Omega +
(Scalar(1) -
Scalar(0.5) * theta * cos(half_theta) / sin(half_theta)) /
(theta * theta) * (Omega * Omega);
}
return V_inv;
}
SOPHUS_FUNC static Sophus::Matrix<Scalar, num_parameters, DoF> Dx_exp_x(
Tangent const& omega) {
using std::cos;
using std::exp;
using std::sin;
using std::sqrt;
Scalar const c0 = omega[0] * omega[0];
Scalar const c1 = omega[1] * omega[1];
Scalar const c2 = omega[2] * omega[2];
Scalar const c3 = c0 + c1 + c2;
if (c3 < Constants<Scalar>::epsilon()) {
return Dx_exp_x_at_0();
}
Scalar const c4 = sqrt(c3);
Scalar const c5 = 1.0 / c4;
Scalar const c6 = 0.5 * c4;
Scalar const c7 = sin(c6);
Scalar const c8 = c5 * c7;
Scalar const c9 = pow(c3, -3.0L / 2.0L);
Scalar const c10 = c7 * c9;
Scalar const c11 = Scalar(1.0) / c3;
Scalar const c12 = cos(c6);
Scalar const c13 = Scalar(0.5) * c11 * c12;
Scalar const c14 = c7 * c9 * omega[0];
Scalar const c15 = Scalar(0.5) * c11 * c12 * omega[0];
Scalar const c16 = -c14 * omega[1] + c15 * omega[1];
Scalar const c17 = -c14 * omega[2] + c15 * omega[2];
Scalar const c18 = omega[1] * omega[2];
Scalar const c19 = -c10 * c18 + c13 * c18;
Scalar const c20 = Scalar(0.5) * c5 * c7;
Sophus::Matrix<Scalar, num_parameters, DoF> J;
J(0, 0) = -c0 * c10 + c0 * c13 + c8;
J(0, 1) = c16;
J(0, 2) = c17;
J(1, 0) = c16;
J(1, 1) = -c1 * c10 + c1 * c13 + c8;
J(1, 2) = c19;
J(2, 0) = c17;
J(2, 1) = c19;
J(2, 2) = -c10 * c2 + c13 * c2 + c8;
J(3, 0) = -c20 * omega[0];
J(3, 1) = -c20 * omega[1];
J(3, 2) = -c20 * omega[2];
return J;
}
SOPHUS_FUNC static Sophus::Matrix<Scalar, num_parameters, DoF>
Dx_exp_x_at_0() {
Sophus::Matrix<Scalar, num_parameters, DoF> J;
// clang-format off
J << Scalar(0.5), Scalar(0), Scalar(0),
Scalar(0), Scalar(0.5), Scalar(0),
Scalar(0), Scalar(0), Scalar(0.5),
Scalar(0), Scalar(0), Scalar(0);
// clang-format on
return J;
}
SOPHUS_FUNC static Sophus::Matrix<Scalar, 3, DoF> Dx_exp_x_times_point_at_0(
Point const& point) {
return hat(-point);
}
SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int i) {
return generator(i);
}
SOPHUS_FUNC static SO3<Scalar> exp(Tangent const& omega) {
Scalar theta;
return expAndTheta(omega, &theta);
}
SOPHUS_FUNC static SO3<Scalar> expAndTheta(Tangent const& omega,
Scalar* theta) {
SOPHUS_ENSURE(theta != nullptr, "%s", "must not be nullptr.");
using std::abs;
using std::cos;
using std::sin;
using std::sqrt;
Scalar theta_sq = omega.squaredNorm();
Scalar imag_factor;
Scalar real_factor;
if (theta_sq <
Constants<Scalar>::epsilon() * Constants<Scalar>::epsilon()) {
*theta = Scalar(0);
Scalar theta_po4 = theta_sq * theta_sq;
imag_factor = Scalar(0.5) - Scalar(1.0 / 48.0) * theta_sq +
Scalar(1.0 / 3840.0) * theta_po4;
real_factor = Scalar(1) - Scalar(1.0 / 8.0) * theta_sq +
Scalar(1.0 / 384.0) * theta_po4;
} else {
*theta = sqrt(theta_sq);
Scalar half_theta = Scalar(0.5) * (*theta);
Scalar sin_half_theta = sin(half_theta);
imag_factor = sin_half_theta / (*theta);
real_factor = cos(half_theta);
}
SO3 q;
q.unit_quaternion_nonconst() =
QuaternionMember(real_factor, imag_factor * omega.x(),
imag_factor * omega.y(), imag_factor * omega.z());
SOPHUS_ENSURE(abs(q.unit_quaternion().squaredNorm() - Scalar(1)) <
Sophus::Constants<Scalar>::epsilon(),
"SO3::exp failed! omega: {}, real: {}, img: {}",
SOPHUS_FMT_ARG(omega.transpose()),
SOPHUS_FMT_ARG(real_factor), SOPHUS_FMT_ARG(imag_factor));
return q;
}
template <class S = Scalar>
static SOPHUS_FUNC enable_if_t<std::is_floating_point<S>::value, SO3>
fitToSO3(Transformation const& R) {
return SO3(::Sophus::makeRotationMatrix(R));
}
SOPHUS_FUNC static Transformation generator(int i) {
SOPHUS_ENSURE(i >= 0 && i <= 2, "%s", "i should be in range [0,2].");
Tangent e;
e.setZero();
e[i] = Scalar(1);
return hat(e);
}
SOPHUS_FUNC static Transformation hat(Tangent const& omega) {
Transformation Omega;
// clang-format off
Omega <<
Scalar(0), -omega(2), omega(1),
omega(2), Scalar(0), -omega(0),
-omega(1), omega(0), Scalar(0);
// clang-format on
return Omega;
}
SOPHUS_FUNC static Tangent lieBracket(Tangent const& omega1,
Tangent const& omega2) {
return omega1.cross(omega2);
}
static SOPHUS_FUNC SO3 rotX(Scalar const& x) {
return SO3::exp(Sophus::Vector3<Scalar>(x, Scalar(0), Scalar(0)));
}
static SOPHUS_FUNC SO3 rotY(Scalar const& y) {
return SO3::exp(Sophus::Vector3<Scalar>(Scalar(0), y, Scalar(0)));
}
static SOPHUS_FUNC SO3 rotZ(Scalar const& z) {
return SO3::exp(Sophus::Vector3<Scalar>(Scalar(0), Scalar(0), z));
}
template <class UniformRandomBitGenerator>
static SO3 sampleUniform(UniformRandomBitGenerator& generator) {
static_assert(IsUniformRandomBitGenerator<UniformRandomBitGenerator>::value,
"generator must meet the UniformRandomBitGenerator concept");
std::uniform_real_distribution<Scalar> uniform(Scalar(0), Scalar(1));
std::uniform_real_distribution<Scalar> uniform_twopi(
Scalar(0), 2 * Constants<Scalar>::pi());
const Scalar u1 = uniform(generator);
const Scalar u2 = uniform_twopi(generator);
const Scalar u3 = uniform_twopi(generator);
const Scalar a = sqrt(1 - u1);
const Scalar b = sqrt(u1);
return SO3(
QuaternionMember(a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3)));
}
SOPHUS_FUNC static Tangent vee(Transformation const& Omega) {
return Tangent(Omega(2, 1), Omega(0, 2), Omega(1, 0));
}
protected:
SOPHUS_FUNC QuaternionMember& unit_quaternion_nonconst() {
return unit_quaternion_;
}
QuaternionMember unit_quaternion_;
};
} // namespace Sophus
namespace Eigen {
template <class Scalar_, int Options>
class Map<Sophus::SO3<Scalar_>, Options>
: public Sophus::SO3Base<Map<Sophus::SO3<Scalar_>, Options>> {
public:
using Base = Sophus::SO3Base<Map<Sophus::SO3<Scalar_>, Options>>;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
friend class Sophus::SO3Base<Map<Sophus::SO3<Scalar_>, Options>>;
using Base::operator=;
using Base::operator*=;
using Base::operator*;
SOPHUS_FUNC explicit Map(Scalar* coeffs) : unit_quaternion_(coeffs) {}
SOPHUS_FUNC Map<Eigen::Quaternion<Scalar>, Options> const& unit_quaternion()
const {
return unit_quaternion_;
}
protected:
SOPHUS_FUNC Map<Eigen::Quaternion<Scalar>, Options>&
unit_quaternion_nonconst() {
return unit_quaternion_;
}
Map<Eigen::Quaternion<Scalar>, Options> unit_quaternion_;
};
template <class Scalar_, int Options>
class Map<Sophus::SO3<Scalar_> const, Options>
: public Sophus::SO3Base<Map<Sophus::SO3<Scalar_> const, Options>> {
public:
using Base = Sophus::SO3Base<Map<Sophus::SO3<Scalar_> const, Options>>;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
using Base::operator*=;
using Base::operator*;
SOPHUS_FUNC explicit Map(Scalar const* coeffs) : unit_quaternion_(coeffs) {}
SOPHUS_FUNC Map<Eigen::Quaternion<Scalar> const, Options> const&
unit_quaternion() const {
return unit_quaternion_;
}
protected:
Map<Eigen::Quaternion<Scalar> const, Options> const unit_quaternion_;
};
} // namespace Eigen