Template Class RxSO3
Defined in File rxso3.hpp
Inheritance Relationships
Base Type
public Sophus::RxSO3Base< RxSO3< Scalar_, Options > >
(Template Class RxSO3Base)
Class Documentation
-
template<class Scalar_, int Options>
class RxSO3 : public Sophus::RxSO3Base<RxSO3<Scalar_, Options>> RxSO3 using storage; derived from RxSO3Base.
Public Types
Public Functions
- SOPHUS_FUNC RxSO3 & operator= (RxSO3 const &other)=default
Define copy-assignment operator explicitly. The definition of implicit copy assignment operator is deprecated in presence of a user-declared copy constructor (-Wdeprecated-copy in clang >= 13).
- inline EIGEN_MAKE_ALIGNED_OPERATOR_NEW SOPHUS_FUNC RxSO3 ()
Default constructor initializes quaternion to identity rotation and scale to 1.
-
template<class OtherDerived>
inline SOPHUS_FUNC RxSO3(RxSO3Base<OtherDerived> const &other) Copy-like constructor from OtherDerived
-
inline explicit SOPHUS_FUNC RxSO3(Transformation const &sR)
Constructor from scaled rotation matrix
Precondition: rotation matrix need to be scaled orthogonal with determinant of
s^3
.
-
inline SOPHUS_FUNC RxSO3(Scalar const &scale, Transformation const &R)
Constructor from scale factor and rotation matrix
R
.Precondition: Rotation matrix
R
must to be orthogonal with determinant of 1 andscale
must not be close to either zero or infinity.
-
inline SOPHUS_FUNC RxSO3(Scalar const &scale, SO3<Scalar> const &so3)
Constructor from scale factor and SO3
Precondition:
scale
must not to be close to either zero or infinity.
-
template<class D>
inline explicit SOPHUS_FUNC RxSO3(Eigen::QuaternionBase<D> const &quat) Constructor from quaternion
Precondition: quaternion must not be close to either zero or infinity.
-
template<class D>
inline explicit SOPHUS_FUNC RxSO3(Scalar const &scale, Eigen::QuaternionBase<D> const &unit_quat) Constructor from scale factor and unit quaternion
Precondition: quaternion must not be close to zero.
- inline SOPHUS_FUNC QuaternionMember const & quaternion () const
Accessor of quaternion.
Public Static Functions
- static inline SOPHUS_FUNC Sophus::Matrix< Scalar, num_parameters, DoF > Dx_exp_x_at_0 ()
Returns derivative of exp(x) wrt. x_i at x=0.
- static inline SOPHUS_FUNC Sophus::Matrix< Scalar, num_parameters, DoF > Dx_exp_x (const Tangent &a)
Returns derivative of exp(x) wrt. x.
- static inline SOPHUS_FUNC Sophus::Matrix< Scalar, 3, DoF > Dx_exp_x_times_point_at_0 (Point const &point)
Returns derivative of exp(x) * p wrt. x_i at x=0.
- static inline SOPHUS_FUNC Transformation Dxi_exp_x_matrix_at_0 (int i)
Returns derivative of exp(x).matrix() wrt.
x_i at x=0
.
- static inline SOPHUS_FUNC RxSO3< Scalar > exp (Tangent const &a)
Group exponential
This functions takes in an element of tangent space (= rotation 3-vector plus logarithm of scale) and returns the corresponding element of the group RxSO3.
To be more specific, this function computes
expmat(hat(omega))
withexpmat(.)
being the matrix exponential andhat(.)
being the hat()-operator of RSO3.
- static inline SOPHUS_FUNC RxSO3< Scalar > expAndTheta (Tangent const &a, Scalar *theta)
As above, but also returns
theta = |omega|
as out-parameter.Precondition:
theta
must not benullptr
.
- static inline SOPHUS_FUNC Transformation generator (int i)
Returns the ith infinitesimal generators of
R+ x SO(3)
.The infinitesimal generators of RxSO3 are:
| 0 0 0 | G_0 = | 0 0 -1 | | 0 1 0 | | 0 0 1 | G_1 = | 0 0 0 | | -1 0 0 | | 0 -1 0 | G_2 = | 1 0 0 | | 0 0 0 | | 1 0 0 | G_2 = | 0 1 0 | | 0 0 1 |
Precondition:
i
must be 0, 1, 2 or 3.
- static inline SOPHUS_FUNC Transformation hat (Tangent const &a)
hat-operator
It takes in the 4-vector representation
a
(= rotation vector plus logarithm of scale) and returns the corresponding matrix representation of Lie algebra element.Formally, the hat()-operator of RxSO3 is defined as
hat(.): R^4 -> R^{3x3}, hat(a) = sum_i a_i * G_i
(for i=0,1,2,3)with
G_i
being the ith infinitesimal generator of RxSO3.The corresponding inverse is the vee()-operator, see below.
- static inline SOPHUS_FUNC Tangent lieBracket (Tangent const &a, Tangent const &b)
Lie bracket
It computes the Lie bracket of RxSO(3). To be more specific, it computes
[omega_1, omega_2]_rxso3 := vee([hat(omega_1), hat(omega_2)])
with
[A,B] := AB-BA
being the matrix commutator,hat(.)
the hat()-operator andvee(.)
the vee()-operator of RxSO3.
-
template<class UniformRandomBitGenerator>
static inline RxSO3 sampleUniform(UniformRandomBitGenerator &generator) Draw uniform sample from RxSO(3) manifold.
The scale factor is drawn uniformly in log2-space from [-1, 1], hence the scale is in [0.5, 2].
- static inline SOPHUS_FUNC Tangent vee (Transformation const &Omega)
vee-operator
It takes the 3x3-matrix representation
Omega
and maps it to the corresponding vector representation of Lie algebra.This is the inverse of the hat()-operator, see above.
Precondition:
Omega
must have the following structure:| d -c b | | c d -a | | -b a d |
Public Static Attributes
Protected Functions
- inline SOPHUS_FUNC QuaternionMember & quaternion_nonconst ()
Protected Attributes
-
QuaternionMember quaternion_
Friends
- friend class RxSO3Base< RxSO3< Scalar_, Options > >