Program Listing for File sim_details.hpp
↰ Return to documentation for file (sophus/sim_details.hpp
)
#pragma once
#include "types.hpp"
namespace Sophus {
namespace details {
template <class Scalar, int N>
Matrix<Scalar, N, N> calcW(Matrix<Scalar, N, N> const &Omega,
Scalar const theta, Scalar const sigma) {
using std::abs;
using std::cos;
using std::exp;
using std::sin;
static Matrix<Scalar, N, N> const I = Matrix<Scalar, N, N>::Identity();
static Scalar const one(1);
static Scalar const half(0.5);
Matrix<Scalar, N, N> const Omega2 = Omega * Omega;
Scalar const scale = exp(sigma);
Scalar A, B, C;
if (abs(sigma) < Constants<Scalar>::epsilon()) {
C = one;
if (abs(theta) < Constants<Scalar>::epsilon()) {
A = half;
B = Scalar(1. / 6.);
} else {
Scalar theta_sq = theta * theta;
A = (one - cos(theta)) / theta_sq;
B = (theta - sin(theta)) / (theta_sq * theta);
}
} else {
C = (scale - one) / sigma;
if (abs(theta) < Constants<Scalar>::epsilon()) {
Scalar sigma_sq = sigma * sigma;
A = ((sigma - one) * scale + one) / sigma_sq;
B = (scale * half * sigma_sq + scale - one - sigma * scale) /
(sigma_sq * sigma);
} else {
Scalar theta_sq = theta * theta;
Scalar a = scale * sin(theta);
Scalar b = scale * cos(theta);
Scalar c = theta_sq + sigma * sigma;
A = (a * sigma + (one - b) * theta) / (theta * c);
B = (C - ((b - one) * sigma + a * theta) / (c)) * one / (theta_sq);
}
}
return A * Omega + B * Omega2 + C * I;
}
template <class Scalar>
void calcW_derivatives(Scalar const theta, Scalar const sigma, Scalar &A,
Scalar &B, Scalar &C, Scalar &A_dsigma, Scalar &B_dsigma,
Scalar &C_dsigma, Scalar &A_dtheta, Scalar &B_dtheta) {
using std::abs;
using std::cos;
using std::exp;
using std::sin;
static Scalar const zero(0.0);
static Scalar const one(1.0);
static Scalar const half(0.5);
static Scalar const two(2.0);
static Scalar const three(3.0);
Scalar const theta_sq = theta * theta;
Scalar const theta_c = theta * theta_sq;
Scalar const sin_theta = sin(theta);
Scalar const cos_theta = cos(theta);
Scalar const scale = exp(sigma);
Scalar const sigma_sq = sigma * sigma;
Scalar const sigma_c = sigma * sigma_sq;
if (abs(sigma) < Constants<Scalar>::epsilon()) {
C = one;
C_dsigma = half;
if (abs(theta) < Constants<Scalar>::epsilon()) {
A = half;
B = Scalar(1. / 6.);
A_dtheta = A_dsigma = zero;
B_dtheta = B_dsigma = zero;
} else {
A = (one - cos_theta) / theta_sq;
B = (theta - sin_theta) / theta_c;
A_dtheta = (theta * sin_theta + two * cos_theta - two) / theta_c;
B_dtheta = -(two * theta - three * sin_theta + theta * cos_theta) /
(theta_c * theta);
A_dsigma = (sin_theta - theta * cos_theta) / theta_c;
B_dsigma =
(half - (cos_theta + theta * sin_theta - one) / theta_sq) / theta_sq;
}
} else {
C = (scale - one) / sigma;
C_dsigma = (scale * (sigma - one) + one) / sigma_sq;
if (abs(theta) < Constants<Scalar>::epsilon()) {
A = ((sigma - one) * scale + one) / sigma_sq;
B = (scale * half * sigma_sq + scale - one - sigma * scale) / sigma_c;
A_dsigma = (scale * (sigma_sq - two * sigma + two) - two) / sigma_c;
B_dsigma = (scale * (half * sigma_c - (one + half) * sigma_sq +
three * sigma - three) +
three) /
(sigma_c * sigma);
A_dtheta = B_dtheta = zero;
} else {
Scalar const a = scale * sin_theta;
Scalar const b = scale * cos_theta;
Scalar const b_one = b - one;
Scalar const theta_b_one = theta * b_one;
Scalar const c = theta_sq + sigma_sq;
Scalar const c_sq = c * c;
Scalar const theta_sq_c = theta_sq * c;
Scalar const a_theta = theta * a;
Scalar const b_theta = theta * b;
Scalar const c_theta = theta * c;
Scalar const a_sigma = sigma * a;
Scalar const b_sigma = sigma * b;
Scalar const two_sigma = sigma * two;
Scalar const two_theta = theta * two;
Scalar const sigma_b_one = sigma * b_one;
A = (a_sigma - theta_b_one) / c_theta;
A_dtheta = (two * (theta_b_one - a_sigma)) / c_sq +
(b_sigma - b + a_theta + one) / c_theta +
(theta_b_one - a_sigma) / theta_sq_c;
A_dsigma = (a - b_theta + a_sigma) / c_theta -
(two_sigma * (theta - b_theta + a_sigma)) / (theta * c_sq);
B = (C - (sigma_b_one + a_theta) / (c)) * one / (theta_sq);
B_dtheta =
((two_theta * (b_sigma - sigma + a_theta)) / c_sq -
((a + b_theta - a_sigma)) / c) /
theta_sq -
(two * ((scale - one) / sigma - (b_sigma - sigma + a_theta) / c)) /
theta_c;
B_dsigma =
-((b_sigma + a_theta + b_one) / c + (scale - one) / sigma_sq -
(two_sigma * (sigma_b_one + a_theta)) / c_sq - scale / sigma) /
theta_sq;
}
}
}
template <class Scalar, int N>
Matrix<Scalar, N, N> calcWInv(Matrix<Scalar, N, N> const &Omega,
Scalar const theta, Scalar const sigma,
Scalar const scale) {
using std::abs;
using std::cos;
using std::sin;
static Matrix<Scalar, N, N> const I = Matrix<Scalar, N, N>::Identity();
static Scalar const half(0.5);
static Scalar const one(1);
static Scalar const two(2);
Matrix<Scalar, N, N> const Omega2 = Omega * Omega;
Scalar const scale_sq = scale * scale;
Scalar const theta_sq = theta * theta;
Scalar const sin_theta = sin(theta);
Scalar const cos_theta = cos(theta);
Scalar a, b, c;
if (abs(sigma * sigma) < Constants<Scalar>::epsilon()) {
c = one - half * sigma;
a = -half;
if (abs(theta_sq) < Constants<Scalar>::epsilon()) {
b = Scalar(1. / 12.);
} else {
b = (theta * sin_theta + two * cos_theta - two) /
(two * theta_sq * (cos_theta - one));
}
} else {
Scalar const scale_cu = scale_sq * scale;
c = sigma / (scale - one);
if (abs(theta_sq) < Constants<Scalar>::epsilon()) {
a = (-sigma * scale + scale - one) / ((scale - one) * (scale - one));
b = (scale_sq * sigma - two * scale_sq + scale * sigma + two * scale) /
(two * scale_cu - Scalar(6) * scale_sq + Scalar(6) * scale - two);
} else {
Scalar const s_sin_theta = scale * sin_theta;
Scalar const s_cos_theta = scale * cos_theta;
a = (theta * s_cos_theta - theta - sigma * s_sin_theta) /
(theta * (scale_sq - two * s_cos_theta + one));
b = -scale *
(theta * s_sin_theta - theta * sin_theta + sigma * s_cos_theta -
scale * sigma + sigma * cos_theta - sigma) /
(theta_sq * (scale_cu - two * scale * s_cos_theta - scale_sq +
two * s_cos_theta + scale - one));
}
}
return a * Omega + b * Omega2 + c * I;
}
} // namespace details
} // namespace Sophus