Program Listing for File rxso3.hpp
↰ Return to documentation for file (sophus/rxso3.hpp
)
#pragma once
#include "so3.hpp"
namespace Sophus {
template <class Scalar_, int Options = 0>
class RxSO3;
using RxSO3d = RxSO3<double>;
using RxSO3f = RxSO3<float>;
} // namespace Sophus
namespace Eigen {
namespace internal {
template <class Scalar_, int Options_>
struct traits<Sophus::RxSO3<Scalar_, Options_>> {
static constexpr int Options = Options_;
using Scalar = Scalar_;
using QuaternionType = Eigen::Quaternion<Scalar, Options>;
};
template <class Scalar_, int Options_>
struct traits<Map<Sophus::RxSO3<Scalar_>, Options_>>
: traits<Sophus::RxSO3<Scalar_, Options_>> {
static constexpr int Options = Options_;
using Scalar = Scalar_;
using QuaternionType = Map<Eigen::Quaternion<Scalar>, Options>;
};
template <class Scalar_, int Options_>
struct traits<Map<Sophus::RxSO3<Scalar_> const, Options_>>
: traits<Sophus::RxSO3<Scalar_, Options_> const> {
static constexpr int Options = Options_;
using Scalar = Scalar_;
using QuaternionType = Map<Eigen::Quaternion<Scalar> const, Options>;
};
} // namespace internal
} // namespace Eigen
namespace Sophus {
template <class Derived>
class RxSO3Base {
public:
static constexpr int Options = Eigen::internal::traits<Derived>::Options;
using Scalar = typename Eigen::internal::traits<Derived>::Scalar;
using QuaternionType =
typename Eigen::internal::traits<Derived>::QuaternionType;
using QuaternionTemporaryType = Eigen::Quaternion<Scalar, Options>;
static int constexpr DoF = 4;
static int constexpr num_parameters = 4;
static int constexpr N = 3;
static int constexpr Dim = 3;
using Transformation = Matrix<Scalar, N, N>;
using Point = Vector3<Scalar>;
using HomogeneousPoint = Vector4<Scalar>;
using Line = ParametrizedLine3<Scalar>;
using Hyperplane = Hyperplane3<Scalar>;
using Tangent = Vector<Scalar, DoF>;
using Adjoint = Matrix<Scalar, DoF, DoF>;
struct TangentAndTheta {
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
Tangent tangent;
Scalar theta;
};
template <typename OtherDerived>
using ReturnScalar = typename Eigen::ScalarBinaryOpTraits<
Scalar, typename OtherDerived::Scalar>::ReturnType;
template <typename OtherDerived>
using RxSO3Product = RxSO3<ReturnScalar<OtherDerived>>;
template <typename PointDerived>
using PointProduct = Vector3<ReturnScalar<PointDerived>>;
template <typename HPointDerived>
using HomogeneousPointProduct = Vector4<ReturnScalar<HPointDerived>>;
SOPHUS_FUNC Adjoint Adj() const {
Adjoint res;
res.setIdentity();
res.template topLeftCorner<3, 3>() = rotationMatrix();
return res;
}
template <class NewScalarType>
SOPHUS_FUNC RxSO3<NewScalarType> cast() const {
return RxSO3<NewScalarType>(quaternion().template cast<NewScalarType>());
}
SOPHUS_FUNC Scalar* data() { return quaternion_nonconst().coeffs().data(); }
SOPHUS_FUNC Scalar const* data() const {
return quaternion().coeffs().data();
}
SOPHUS_FUNC RxSO3<Scalar> inverse() const {
return RxSO3<Scalar>(quaternion().inverse());
}
SOPHUS_FUNC Tangent log() const { return logAndTheta().tangent; }
SOPHUS_FUNC TangentAndTheta logAndTheta() const {
using std::log;
Scalar scale = quaternion().squaredNorm();
TangentAndTheta result;
result.tangent[3] = log(scale);
auto omega_and_theta = SO3<Scalar>(quaternion()).logAndTheta();
result.tangent.template head<3>() = omega_and_theta.tangent;
result.theta = omega_and_theta.theta;
return result;
}
SOPHUS_FUNC Transformation matrix() const {
Transformation sR;
Scalar const vx_sq = quaternion().vec().x() * quaternion().vec().x();
Scalar const vy_sq = quaternion().vec().y() * quaternion().vec().y();
Scalar const vz_sq = quaternion().vec().z() * quaternion().vec().z();
Scalar const w_sq = quaternion().w() * quaternion().w();
Scalar const two_vx = Scalar(2) * quaternion().vec().x();
Scalar const two_vy = Scalar(2) * quaternion().vec().y();
Scalar const two_vz = Scalar(2) * quaternion().vec().z();
Scalar const two_vx_vy = two_vx * quaternion().vec().y();
Scalar const two_vx_vz = two_vx * quaternion().vec().z();
Scalar const two_vx_w = two_vx * quaternion().w();
Scalar const two_vy_vz = two_vy * quaternion().vec().z();
Scalar const two_vy_w = two_vy * quaternion().w();
Scalar const two_vz_w = two_vz * quaternion().w();
sR(0, 0) = vx_sq - vy_sq - vz_sq + w_sq;
sR(1, 0) = two_vx_vy + two_vz_w;
sR(2, 0) = two_vx_vz - two_vy_w;
sR(0, 1) = two_vx_vy - two_vz_w;
sR(1, 1) = -vx_sq + vy_sq - vz_sq + w_sq;
sR(2, 1) = two_vx_w + two_vy_vz;
sR(0, 2) = two_vx_vz + two_vy_w;
sR(1, 2) = -two_vx_w + two_vy_vz;
sR(2, 2) = -vx_sq - vy_sq + vz_sq + w_sq;
return sR;
}
template <class OtherDerived>
SOPHUS_FUNC RxSO3Base<Derived>& operator=(
RxSO3Base<OtherDerived> const& other) {
quaternion_nonconst() = other.quaternion();
return *this;
}
template <typename OtherDerived>
SOPHUS_FUNC RxSO3Product<OtherDerived> operator*(
RxSO3Base<OtherDerived> const& other) const {
using std::sqrt;
using ResultT = ReturnScalar<OtherDerived>;
using QuaternionProductType =
typename RxSO3Product<OtherDerived>::QuaternionType;
QuaternionProductType result_quaternion(
Sophus::SO3<double>::QuaternionProduct<QuaternionProductType>(
quaternion(), other.quaternion()));
ResultT scale = result_quaternion.squaredNorm();
if (scale < Constants<ResultT>::epsilon()) {
SOPHUS_ENSURE(scale > ResultT(0), "Scale must be greater zero.");
result_quaternion.normalize();
result_quaternion.coeffs() *= sqrt(Constants<ResultT>::epsilonPlus());
}
if (scale > ResultT(1.) / Constants<ResultT>::epsilon()) {
result_quaternion.normalize();
result_quaternion.coeffs() /= sqrt(Constants<ResultT>::epsilonPlus());
}
return RxSO3Product<OtherDerived>(result_quaternion);
}
template <typename PointDerived,
typename = typename std::enable_if<
IsFixedSizeVector<PointDerived, 3>::value>::type>
SOPHUS_FUNC PointProduct<PointDerived> operator*(
Eigen::MatrixBase<PointDerived> const& p) const {
// Follows http:///eigen.tuxfamily.org/bz/show_bug.cgi?id=459
Scalar scale = quaternion().squaredNorm();
PointProduct<PointDerived> two_vec_cross_p = quaternion().vec().cross(p);
two_vec_cross_p += two_vec_cross_p;
return scale * p + (quaternion().w() * two_vec_cross_p +
quaternion().vec().cross(two_vec_cross_p));
}
template <typename HPointDerived,
typename = typename std::enable_if<
IsFixedSizeVector<HPointDerived, 4>::value>::type>
SOPHUS_FUNC HomogeneousPointProduct<HPointDerived> operator*(
Eigen::MatrixBase<HPointDerived> const& p) const {
const auto rsp = *this * p.template head<3>();
return HomogeneousPointProduct<HPointDerived>(rsp(0), rsp(1), rsp(2), p(3));
}
SOPHUS_FUNC Line operator*(Line const& l) const {
return Line((*this) * l.origin(),
(*this) * l.direction() / quaternion().squaredNorm());
}
SOPHUS_FUNC Hyperplane operator*(Hyperplane const& p) const {
const auto this_scale = scale();
return Hyperplane((*this) * p.normal() / this_scale,
this_scale * p.offset());
}
template <typename OtherDerived,
typename = typename std::enable_if<
std::is_same<Scalar, ReturnScalar<OtherDerived>>::value>::type>
SOPHUS_FUNC RxSO3Base<Derived>& operator*=(
RxSO3Base<OtherDerived> const& other) {
*static_cast<Derived*>(this) = *this * other;
return *this;
}
SOPHUS_FUNC Sophus::Vector<Scalar, num_parameters> params() const {
return quaternion().coeffs();
}
SOPHUS_FUNC void setQuaternion(Eigen::Quaternion<Scalar> const& quat) {
SOPHUS_ENSURE(quat.squaredNorm() > Constants<Scalar>::epsilon() *
Constants<Scalar>::epsilon(),
"Scale factor must be greater-equal epsilon.");
SOPHUS_ENSURE(
quat.squaredNorm() < Scalar(1.) / (Constants<Scalar>::epsilon() *
Constants<Scalar>::epsilon()),
"Inverse scale factor must be greater-equal epsilon.");
static_cast<Derived*>(this)->quaternion_nonconst() = quat;
}
SOPHUS_FUNC QuaternionType const& quaternion() const {
return static_cast<Derived const*>(this)->quaternion();
}
SOPHUS_FUNC Transformation rotationMatrix() const {
QuaternionTemporaryType norm_quad = quaternion();
norm_quad.normalize();
return norm_quad.toRotationMatrix();
}
SOPHUS_FUNC
Scalar scale() const { return quaternion().squaredNorm(); }
SOPHUS_FUNC void setRotationMatrix(Transformation const& R) {
using std::sqrt;
Scalar saved_scale = scale();
quaternion_nonconst() = R;
quaternion_nonconst().coeffs() *= sqrt(saved_scale);
}
SOPHUS_FUNC
void setScale(Scalar const& scale) {
using std::sqrt;
quaternion_nonconst().normalize();
quaternion_nonconst().coeffs() *= sqrt(scale);
}
SOPHUS_FUNC void setScaledRotationMatrix(Transformation const& sR) {
Transformation squared_sR = sR * sR.transpose();
Scalar squared_scale =
Scalar(1. / 3.) *
(squared_sR(0, 0) + squared_sR(1, 1) + squared_sR(2, 2));
SOPHUS_ENSURE(squared_scale >= Constants<Scalar>::epsilon() *
Constants<Scalar>::epsilon(),
"Scale factor must be greater-equal epsilon.");
SOPHUS_ENSURE(squared_scale < Scalar(1.) / (Constants<Scalar>::epsilon() *
Constants<Scalar>::epsilon()),
"Inverse scale factor must be greater-equal epsilon.");
Scalar scale = sqrt(squared_scale);
quaternion_nonconst() = sR / scale;
quaternion_nonconst().coeffs() *= sqrt(scale);
}
SOPHUS_FUNC void setSO3(SO3<Scalar> const& so3) {
using std::sqrt;
Scalar saved_scale = scale();
quaternion_nonconst() = so3.unit_quaternion();
quaternion_nonconst().coeffs() *= sqrt(saved_scale);
}
SOPHUS_FUNC SO3<Scalar> so3() const { return SO3<Scalar>(quaternion()); }
SOPHUS_FUNC Matrix<Scalar, num_parameters, DoF> Dx_this_mul_exp_x_at_0()
const {
Matrix<Scalar, num_parameters, DoF> J;
Eigen::Quaternion<Scalar> const q = quaternion();
J.col(3) = q.coeffs() * Scalar(0.5);
Scalar const c0 = Scalar(0.5) * q.w();
Scalar const c1 = Scalar(0.5) * q.z();
Scalar const c2 = -c1;
Scalar const c3 = Scalar(0.5) * q.y();
Scalar const c4 = Scalar(0.5) * q.x();
Scalar const c5 = -c4;
Scalar const c6 = -c3;
J(0, 0) = c0;
J(0, 1) = c2;
J(0, 2) = c3;
J(1, 0) = c1;
J(1, 1) = c0;
J(1, 2) = c5;
J(2, 0) = c6;
J(2, 1) = c4;
J(2, 2) = c0;
J(3, 0) = c5;
J(3, 1) = c6;
J(3, 2) = c2;
return J;
}
SOPHUS_FUNC Matrix<Scalar, DoF, num_parameters> Dx_log_this_inv_by_x_at_this()
const {
auto& q = quaternion();
Matrix<Scalar, DoF, num_parameters> J;
// clang-format off
J << q.w(), q.z(), -q.y(), -q.x(),
-q.z(), q.w(), q.x(), -q.y(),
q.y(), -q.x(), q.w(), -q.z(),
q.x(), q.y(), q.z(), q.w();
// clang-format on
const Scalar scaler = Scalar(2.) / q.squaredNorm();
return J * scaler;
}
private:
SOPHUS_FUNC QuaternionType& quaternion_nonconst() {
return static_cast<Derived*>(this)->quaternion_nonconst();
}
};
template <class Scalar_, int Options>
class RxSO3 : public RxSO3Base<RxSO3<Scalar_, Options>> {
public:
using Base = RxSO3Base<RxSO3<Scalar_, Options>>;
static int constexpr DoF = Base::DoF;
static int constexpr num_parameters = Base::num_parameters;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
using QuaternionMember = Eigen::Quaternion<Scalar, Options>;
friend class RxSO3Base<RxSO3<Scalar_, Options>>;
using Base::operator=;
SOPHUS_FUNC RxSO3& operator=(RxSO3 const& other) = default;
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
SOPHUS_FUNC RxSO3()
: quaternion_(Scalar(1), Scalar(0), Scalar(0), Scalar(0)) {}
SOPHUS_FUNC RxSO3(RxSO3 const& other) = default;
template <class OtherDerived>
SOPHUS_FUNC RxSO3(RxSO3Base<OtherDerived> const& other)
: quaternion_(other.quaternion()) {}
SOPHUS_FUNC explicit RxSO3(Transformation const& sR) {
this->setScaledRotationMatrix(sR);
}
SOPHUS_FUNC RxSO3(Scalar const& scale, Transformation const& R)
: quaternion_(R) {
SOPHUS_ENSURE(scale >= Constants<Scalar>::epsilon(),
"Scale factor must be greater-equal epsilon.");
SOPHUS_ENSURE(scale < Scalar(1.) / Constants<Scalar>::epsilon(),
"Inverse scale factor must be greater-equal epsilon.");
using std::sqrt;
quaternion_.coeffs() *= sqrt(scale);
}
SOPHUS_FUNC RxSO3(Scalar const& scale, SO3<Scalar> const& so3)
: quaternion_(so3.unit_quaternion()) {
SOPHUS_ENSURE(scale >= Constants<Scalar>::epsilon(),
"Scale factor must be greater-equal epsilon.");
SOPHUS_ENSURE(scale < Scalar(1.) / Constants<Scalar>::epsilon(),
"Inverse scale factor must be greater-equal epsilon.");
using std::sqrt;
quaternion_.coeffs() *= sqrt(scale);
}
template <class D>
SOPHUS_FUNC explicit RxSO3(Eigen::QuaternionBase<D> const& quat)
: quaternion_(quat) {
static_assert(std::is_same<typename D::Scalar, Scalar>::value,
"must be same Scalar type.");
SOPHUS_ENSURE(quaternion_.squaredNorm() >= Constants<Scalar>::epsilon(),
"Scale factor must be greater-equal epsilon.");
SOPHUS_ENSURE(
quat.squaredNorm() < Scalar(1.) / Constants<Scalar>::epsilon(),
"Inverse scale factor must be greater-equal epsilon.");
}
template <class D>
SOPHUS_FUNC explicit RxSO3(Scalar const& scale,
Eigen::QuaternionBase<D> const& unit_quat)
: RxSO3(scale, SO3<Scalar>(unit_quat)) {}
SOPHUS_FUNC QuaternionMember const& quaternion() const { return quaternion_; }
SOPHUS_FUNC static Sophus::Matrix<Scalar, num_parameters, DoF>
Dx_exp_x_at_0() {
static Scalar const h(0.5);
return h * Sophus::Matrix<Scalar, num_parameters, DoF>::Identity();
}
SOPHUS_FUNC static Sophus::Matrix<Scalar, num_parameters, DoF> Dx_exp_x(
const Tangent& a) {
using std::exp;
using std::sqrt;
Sophus::Matrix<Scalar, num_parameters, DoF> J;
Vector3<Scalar> const omega = a.template head<3>();
Scalar const sigma = a[3];
Eigen::Quaternion<Scalar> quat = SO3<Scalar>::exp(omega).unit_quaternion();
Scalar const scale = sqrt(exp(sigma));
Scalar const scale_half = scale * Scalar(0.5);
J.template block<4, 3>(0, 0) = SO3<Scalar>::Dx_exp_x(omega) * scale;
J.col(3) = quat.coeffs() * scale_half;
return J;
}
SOPHUS_FUNC static Sophus::Matrix<Scalar, 3, DoF> Dx_exp_x_times_point_at_0(
Point const& point) {
Sophus::Matrix<Scalar, 3, DoF> j;
j << Sophus::SO3<Scalar>::hat(-point), point;
return j;
}
SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int i) {
return generator(i);
}
SOPHUS_FUNC static RxSO3<Scalar> exp(Tangent const& a) {
Scalar theta;
return expAndTheta(a, &theta);
}
SOPHUS_FUNC static RxSO3<Scalar> expAndTheta(Tangent const& a,
Scalar* theta) {
SOPHUS_ENSURE(theta != nullptr, "must not be nullptr.");
using std::exp;
using std::max;
using std::min;
using std::sqrt;
Vector3<Scalar> const omega = a.template head<3>();
Scalar sigma = a[3];
Scalar scale = exp(sigma);
// Ensure that scale-factor constraint is always valid
scale = max(scale, Constants<Scalar>::epsilonPlus());
scale = min(scale, Scalar(1.) / Constants<Scalar>::epsilonPlus());
Scalar sqrt_scale = sqrt(scale);
Eigen::Quaternion<Scalar> quat =
SO3<Scalar>::expAndTheta(omega, theta).unit_quaternion();
quat.coeffs() *= sqrt_scale;
return RxSO3<Scalar>(quat);
}
SOPHUS_FUNC static Transformation generator(int i) {
SOPHUS_ENSURE(i >= 0 && i <= 3, "i should be in range [0,3].");
Tangent e;
e.setZero();
e[i] = Scalar(1);
return hat(e);
}
SOPHUS_FUNC static Transformation hat(Tangent const& a) {
Transformation A;
// clang-format off
A << a(3), -a(2), a(1),
a(2), a(3), -a(0),
-a(1), a(0), a(3);
// clang-format on
return A;
}
SOPHUS_FUNC static Tangent lieBracket(Tangent const& a, Tangent const& b) {
Vector3<Scalar> const omega1 = a.template head<3>();
Vector3<Scalar> const omega2 = b.template head<3>();
Vector4<Scalar> res;
res.template head<3>() = omega1.cross(omega2);
res[3] = Scalar(0);
return res;
}
template <class UniformRandomBitGenerator>
static RxSO3 sampleUniform(UniformRandomBitGenerator& generator) {
std::uniform_real_distribution<Scalar> uniform(Scalar(-1), Scalar(1));
using std::exp2;
return RxSO3(exp2(uniform(generator)),
SO3<Scalar>::sampleUniform(generator));
}
SOPHUS_FUNC static Tangent vee(Transformation const& Omega) {
using std::abs;
return Tangent(Omega(2, 1), Omega(0, 2), Omega(1, 0), Omega(0, 0));
}
protected:
SOPHUS_FUNC QuaternionMember& quaternion_nonconst() { return quaternion_; }
QuaternionMember quaternion_;
};
} // namespace Sophus
namespace Eigen {
template <class Scalar_, int Options>
class Map<Sophus::RxSO3<Scalar_>, Options>
: public Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_>, Options>> {
public:
using Base = Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_>, Options>>;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
friend class Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_>, Options>>;
using Base::operator=;
using Base::operator*=;
using Base::operator*;
SOPHUS_FUNC explicit Map(Scalar* coeffs) : quaternion_(coeffs) {}
SOPHUS_FUNC
Map<Eigen::Quaternion<Scalar>, Options> const& quaternion() const {
return quaternion_;
}
protected:
SOPHUS_FUNC Map<Eigen::Quaternion<Scalar>, Options>& quaternion_nonconst() {
return quaternion_;
}
Map<Eigen::Quaternion<Scalar>, Options> quaternion_;
};
template <class Scalar_, int Options>
class Map<Sophus::RxSO3<Scalar_> const, Options>
: public Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_> const, Options>> {
public:
using Base = Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_> const, Options>>;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
using Base::operator*=;
using Base::operator*;
SOPHUS_FUNC
explicit Map(Scalar const* coeffs) : quaternion_(coeffs) {}
SOPHUS_FUNC
Map<Eigen::Quaternion<Scalar> const, Options> const& quaternion() const {
return quaternion_;
}
protected:
Map<Eigen::Quaternion<Scalar> const, Options> const quaternion_;
};
} // namespace Eigen