31 PreintegrationBase::PreintegrationBase(
const std::shared_ptr<Params>&
p,
33 : p_(p), biasHat_(biasHat), deltaTij_(0.0) {
38 os <<
" deltaTij = " << pim.
deltaTij_ << endl;
39 os <<
" deltaRij.ypr = (" << pim.
deltaRij().
ypr().transpose() <<
")" << endl;
40 os <<
" deltaPij = " << pim.
deltaPij().transpose() << endl;
41 os <<
" deltaVij = " << pim.
deltaVij().transpose() << endl;
49 cout << (s.empty() ?
s : s +
"\n") << *
this << endl;
75 const Vector3 correctedOmega = bRs * unbiasedOmega;
78 if (correctedAcc_H_unbiasedAcc) *correctedAcc_H_unbiasedAcc = bRs;
79 if (correctedAcc_H_unbiasedOmega) *correctedAcc_H_unbiasedOmega = Z_3x3;
80 if (correctedOmega_H_unbiasedOmega) *correctedOmega_H_unbiasedOmega = bRs;
84 if (!b_arm.isZero()) {
87 const Matrix3 body_Omega_body =
skewSymmetric(correctedOmega);
88 const Vector3 b_velocity_bs = body_Omega_body * b_arm;
89 correctedAcc -= body_Omega_body * b_velocity_bs;
92 if (correctedAcc_H_unbiasedOmega) {
93 double wdp = correctedOmega.dot(b_arm);
94 const Matrix3 diag_wdp = Vector3::Constant(wdp).asDiagonal();
95 *correctedAcc_H_unbiasedOmega = -( diag_wdp
96 + correctedOmega * b_arm.transpose()) * bRs.matrix()
97 + 2 * b_arm * unbiasedOmega.transpose();
101 return make_pair(correctedAcc, correctedOmega);
111 update(measuredAcc, measuredOmega, dt, &A, &B, &C);
118 Matrix96 D_biasCorrected_bias;
120 H2 ? &D_biasCorrected_bias :
nullptr);
123 Matrix9 D_delta_state, D_delta_biasCorrected;
125 p().omegaCoriolis,
p().use2ndOrderCoriolis, H1 ? &D_delta_state :
nullptr,
126 H2 ? &D_delta_biasCorrected :
nullptr);
129 Matrix9 D_predict_state, D_predict_delta;
131 H1 ? &D_predict_state :
nullptr,
132 H2 || H2 ? &D_predict_delta :
nullptr);
134 *H1 = D_predict_state + D_predict_delta * D_delta_state;
136 *H2 = D_predict_delta * D_delta_biasCorrected * D_biasCorrected_bias;
149 Matrix96 D_predict_bias_i;
151 state_i, bias_i, H1 ? &D_predict_state_i : 0, H3 ? &D_predict_bias_i : 0);
154 Matrix9 D_error_state_j, D_error_predict;
157 H1 || H3 ? &D_error_predict : 0);
159 if (H1) *H1 << D_error_predict * D_predict_state_i;
160 if (H2) *H2 << D_error_state_j;
161 if (H3) *H3 << D_error_predict * D_predict_bias_i;
179 Matrix9 D_error_state_i, D_error_state_j;
181 H1 || H2 ? &D_error_state_i : 0, H3 || H4 ? &D_error_state_j : 0, H5);
188 if (H1) *H1 << D_error_state_i.leftCols<6>();
189 if (H2) *H2 << D_error_state_i.rightCols<3>() * state_i.
R().transpose();
190 if (H3) *H3 << D_error_state_j.leftCols<6>();
191 if (H4) *H4 << D_error_state_j.rightCols<3>() * state_j.
R().transpose();
Matrix< SCALARB, Dynamic, Dynamic, opt_B > B
Vector3 correctedAcc(const PreintegratedImuMeasurements &pim, const Vector3 &measuredAcc, const Vector3 &measuredOmega)
virtual void update(const Vector3 &measuredAcc, const Vector3 &measuredOmega, const double dt, Matrix9 *A, Matrix93 *B, Matrix93 *C)=0
static Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0))
Some functions to compute numerical derivatives.
Vector9 correctPIM(const Vector9 &pim, double dt, const Vector3 &n_gravity, const std::optional< Vector3 > &omegaCoriolis, bool use2ndOrderCoriolis=false, OptionalJacobian< 9, 9 > H1={}, OptionalJacobian< 9, 9 > H2={}) const
Matrix< SCALARA, Dynamic, Dynamic, opt_A > A
Vector9 computeError(const NavState &state_i, const NavState &state_j, const imuBias::ConstantBias &bias_i, OptionalJacobian< 9, 9 > H1, OptionalJacobian< 9, 9 > H2, OptionalJacobian< 9, 6 > H3) const
Calculate error given navStates.
Params & p() const
const reference to params
virtual Rot3 deltaRij() const =0
virtual Vector3 deltaPij() const =0
const Vector3 & accelerometer() const
void resetIntegrationAndSetBias(const Bias &biasHat)
Vector9 computeErrorAndJacobians(const Pose3 &pose_i, const Vector3 &vel_i, const Pose3 &pose_j, const Vector3 &vel_j, const imuBias::ConstantBias &bias_i, OptionalJacobian< 9, 6 > H1={}, OptionalJacobian< 9, 3 > H2={}, OptionalJacobian< 9, 6 > H3={}, OptionalJacobian< 9, 3 > H4={}, OptionalJacobian< 9, 6 > H5={}) const
virtual void resetIntegration()=0
virtual void print(const std::string &s="") const
const imuBias::ConstantBias & biasHat() const
static const Vector3 measuredAcc
double deltaTij_
Time interval from i to j.
Matrix< Scalar, Dynamic, Dynamic > C
virtual void integrateMeasurement(const Vector3 &measuredAcc, const Vector3 &measuredOmega, const double dt)
Version without derivatives.
Matrix3 R() const
Return rotation matrix. Induces computation in quaternion mode.
NavState retract(const Vector9 &v, OptionalJacobian< 9, 9 > H1={}, OptionalJacobian< 9, 9 > H2={}) const
retract with optional derivatives
Matrix3 skewSymmetric(double wx, double wy, double wz)
static const Vector3 measuredOmega(w, 0, 0)
NavState predict(const NavState &state_i, const imuBias::ConstantBias &bias_i, OptionalJacobian< 9, 9 > H1={}, OptionalJacobian< 9, 6 > H2={}) const
Predict state at time j.
ofstream os("timeSchurFactors.csv")
GTSAM_EXPORT friend std::ostream & operator<<(std::ostream &os, const PreintegrationBase &pim)
std::pair< Vector3, Vector3 > correctMeasurementsBySensorPose(const Vector3 &unbiasedAcc, const Vector3 &unbiasedOmega, OptionalJacobian< 3, 3 > correctedAcc_H_unbiasedAcc={}, OptionalJacobian< 3, 3 > correctedAcc_H_unbiasedOmega={}, OptionalJacobian< 3, 3 > correctedOmega_H_unbiasedOmega={}) const
virtual Vector3 deltaVij() const =0
std::optional< Pose3 > body_P_sensor
The pose of the sensor in the body frame.
const Vector3 & gyroscope() const
Vector9 localCoordinates(const NavState &g, OptionalJacobian< 9, 9 > H1={}, OptionalJacobian< 9, 9 > H2={}) const
localCoordinates with optional derivatives
virtual Vector9 biasCorrectedDelta(const imuBias::ConstantBias &bias_i, OptionalJacobian< 9, 6 > H={}) const =0
Vector3 ypr(OptionalJacobian< 3, 3 > H={}) const
Bias biasHat_
Acceleration and gyro bias used for preintegration.