Namespaces | Classes | Typedefs | Enumerations | Functions | Variables
Eigen Namespace Reference

iterative scaling algorithm to equilibrate rows and column norms in matrices More...

Namespaces

namespace  Architecture
namespace  HybridNonLinearSolverSpace
namespace  internal
namespace  LevenbergMarquardtSpace
namespace  numext

Classes

class  aligned_allocator
 STL compatible allocator to use with with 16 byte aligned types. More...
class  aligned_allocator_indirection
class  AlignedBox
 An axis aligned box. More...
class  AMDOrdering
class  AngleAxis
 Represents a 3D rotation as a rotation angle around an arbitrary 3D axis. More...
class  ArpackGeneralizedSelfAdjointEigenSolver
class  Array
 General-purpose arrays with easy API for coefficient-wise operations. More...
class  ArrayBase
 Base class for all 1D and 2D array, and related expressions. More...
class  ArrayWrapper
 Expression of a mathematical vector or matrix as an array object. More...
struct  ArrayXpr
class  AutoDiffJacobian
class  AutoDiffScalar
 A scalar type replacement with automatic differentation capability. More...
class  AutoDiffVector
class  BDCSVD
 class Bidiagonal Divide and Conquer SVD More...
class  BiCGSTAB
 A bi conjugate gradient stabilized solver for sparse square problems. More...
class  Block
 Expression of a fixed-size or dynamic-size block. More...
class  BlockImpl< const SparseMatrix< _Scalar, _Options, _Index >, BlockRows, BlockCols, true, Sparse >
class  BlockImpl< SparseMatrix< _Scalar, _Options, _Index >, BlockRows, BlockCols, true, Sparse >
class  BlockImpl< XprType, BlockRows, BlockCols, InnerPanel, Dense >
class  BlockImpl< XprType, BlockRows, BlockCols, InnerPanel, Sparse >
class  BlockImpl< XprType, BlockRows, BlockCols, true, Sparse >
class  CholmodBase
 The base class for the direct Cholesky factorization of Cholmod. More...
class  CholmodDecomposition
 A general Cholesky factorization and solver based on Cholmod. More...
class  CholmodSimplicialLDLT
 A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod. More...
class  CholmodSimplicialLLT
 A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod. More...
class  CholmodSupernodalLLT
 A supernodal Cholesky (LLT) factorization and solver based on Cholmod. More...
class  CoeffBasedProduct
class  COLAMDOrdering
class  ColPivHouseholderQR
 Householder rank-revealing QR decomposition of a matrix with column-pivoting. More...
class  CommaInitializer
 Helper class used by the comma initializer operator. More...
class  ComplexEigenSolver
 Computes eigenvalues and eigenvectors of general complex matrices. More...
class  ComplexSchur
 Performs a complex Schur decomposition of a real or complex square matrix. More...
class  ConjugateGradient
 A conjugate gradient solver for sparse self-adjoint problems. More...
class  Cwise
 Pseudo expression providing additional coefficient-wise operations. More...
class  CwiseBinaryOp
 Generic expression where a coefficient-wise binary operator is applied to two expressions. More...
class  CwiseBinaryOpImpl< BinaryOp, Lhs, Rhs, Dense >
class  CwiseBinaryOpImpl< BinaryOp, Lhs, Rhs, Sparse >
class  CwiseNullaryOp
 Generic expression of a matrix where all coefficients are defined by a functor. More...
class  CwiseUnaryOp
 Generic expression where a coefficient-wise unary operator is applied to an expression. More...
class  CwiseUnaryOpImpl< UnaryOp, MatrixType, Sparse >
class  CwiseUnaryOpImpl< UnaryOp, XprType, Dense >
class  CwiseUnaryView
 Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector. More...
class  CwiseUnaryViewImpl< ViewOp, MatrixType, Dense >
class  CwiseUnaryViewImpl< ViewOp, MatrixType, Sparse >
struct  Dense
class  DenseBase
 Base class for all dense matrices, vectors, and arrays. More...
class  DenseCoeffsBase< Derived, DirectAccessors >
 Base class providing direct read-only coefficient access to matrices and arrays. More...
class  DenseCoeffsBase< Derived, DirectWriteAccessors >
 Base class providing direct read/write coefficient access to matrices and arrays. More...
class  DenseCoeffsBase< Derived, ReadOnlyAccessors >
 Base class providing read-only coefficient access to matrices and arrays. More...
class  DenseCoeffsBase< Derived, WriteAccessors >
 Base class providing read/write coefficient access to matrices and arrays. More...
struct  DenseFunctor
struct  DenseSparseProductReturnType
struct  DenseSparseProductReturnType< Lhs, Rhs, 1 >
class  DenseStorage
class  DenseStorage< T, 0, _Rows, _Cols, _Options >
class  DenseStorage< T, 0, _Rows, Dynamic, _Options >
class  DenseStorage< T, 0, Dynamic, _Cols, _Options >
class  DenseStorage< T, 0, Dynamic, Dynamic, _Options >
class  DenseStorage< T, Dynamic, _Rows, Dynamic, _Options >
class  DenseStorage< T, Dynamic, Dynamic, _Cols, _Options >
class  DenseStorage< T, Dynamic, Dynamic, Dynamic, _Options >
class  DenseStorage< T, Size, _Rows, Dynamic, _Options >
class  DenseStorage< T, Size, Dynamic, _Cols, _Options >
class  DenseStorage< T, Size, Dynamic, Dynamic, _Options >
class  DenseTimeSparseProduct
class  DenseTimeSparseSelfAdjointProduct
class  DGMRES
 A Restarted GMRES with deflation. This class implements a modification of the GMRES solver for sparse linear systems. The basis is built with modified Gram-Schmidt. At each restart, a few approximated eigenvectors corresponding to the smallest eigenvalues are used to build a preconditioner for the next cycle. This preconditioner for deflation can be combined with any other preconditioner, the IncompleteLUT for instance. The preconditioner is applied at right of the matrix and the combination is multiplicative. More...
class  Diagonal
 Expression of a diagonal/subdiagonal/superdiagonal in a matrix. More...
class  DiagonalBase
class  DiagonalMatrix
 Represents a diagonal matrix with its storage. More...
class  DiagonalPreconditioner
 A preconditioner based on the digonal entries. More...
class  DiagonalProduct
class  DiagonalWrapper
 Expression of a diagonal matrix. More...
class  DynamicSparseMatrix
 A sparse matrix class designed for matrix assembly purpose. More...
struct  ei_cleantype
struct  ei_cleantype< const T & >
struct  ei_cleantype< const T * >
struct  ei_cleantype< const T >
struct  ei_cleantype< T & >
struct  ei_cleantype< T * >
struct  ei_import_selector< Derived1, Derived2, false, false >
struct  ei_import_selector< Derived1, Derived2, false, true >
struct  ei_import_selector< Derived1, Derived2, true, true >
struct  ei_is_same_type
struct  ei_is_same_type< T, T >
struct  ei_lexi_comparison< Derived1, Derived2, 2 >
struct  ei_lexi_comparison< Derived1, Derived2, 3 >
struct  ei_lexi_comparison< Derived1, Derived2, 4 >
struct  ei_meta_false
struct  ei_meta_if
struct  ei_meta_if< false, Then, Else >
class  ei_meta_sqrt
class  ei_meta_sqrt< Y, InfX, SupX, true >
struct  ei_meta_true
struct  ei_quaternion_assign_impl< Other, 3, 3 >
struct  ei_quaternion_assign_impl< Other, 4, 1 >
struct  ei_to_vcgtype
struct  ei_traits
struct  ei_traits< AngleAxis< _Scalar > >
struct  ei_traits< Quaternion< _Scalar > >
struct  ei_traits< Rotation2D< _Scalar > >
struct  ei_transform_product_impl< Other, Dim, HDim, Dim, 1 >
struct  ei_transform_product_impl< Other, Dim, HDim, Dim, Dim >
struct  ei_transform_product_impl< Other, Dim, HDim, HDim, 1 >
struct  ei_transform_product_impl< Other, Dim, HDim, HDim, HDim >
struct  ei_unconst
struct  ei_unconst< const T >
struct  ei_unconst< T const & >
struct  ei_unconst< T const * >
struct  ei_unpointer
struct  ei_unpointer< T * >
struct  ei_unpointer< T *const >
struct  ei_unref
struct  ei_unref< T & >
struct  EigenBase
class  EigenSolver
 Computes eigenvalues and eigenvectors of general matrices. More...
class  Flagged
 Expression with modified flags. More...
class  ForceAlignedAccess
 Enforce aligned packet loads and stores regardless of what is requested. More...
class  FullPivHouseholderQR
 Householder rank-revealing QR decomposition of a matrix with full pivoting. More...
class  FullPivLU
 LU decomposition of a matrix with complete pivoting, and related features. More...
struct  general_product_to_triangular_selector< MatrixType, ProductType, UpLo, false >
struct  general_product_to_triangular_selector< MatrixType, ProductType, UpLo, true >
class  GeneralizedEigenSolver
 Computes the generalized eigenvalues and eigenvectors of a pair of general matrices. More...
class  GeneralizedSelfAdjointEigenSolver
 Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem. More...
class  GeneralProduct< Lhs, Rhs, GemmProduct >
class  GeneralProduct< Lhs, Rhs, GemvProduct >
class  GeneralProduct< Lhs, Rhs, InnerProduct >
class  GeneralProduct< Lhs, Rhs, OuterProduct >
struct  GenericNumTraits
class  GMRES
 A GMRES solver for sparse square problems. More...
class  HessenbergDecomposition
 Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation. More...
class  Homogeneous
 Expression of one (or a set of) homogeneous vector(s) More...
class  HouseholderQR
 Householder QR decomposition of a matrix. More...
class  HouseholderSequence
 Sequence of Householder reflections acting on subspaces with decreasing size. More...
class  HybridNonLinearSolver
 Finds a zero of a system of n nonlinear functions in n variables by a modification of the Powell hybrid method ("dogleg"). More...
class  Hyperplane
 A hyperplane. More...
class  IdentityPreconditioner
 A naive preconditioner which approximates any matrix as the identity matrix. More...
class  IncompleteCholesky
 Modified Incomplete Cholesky with dual threshold. More...
class  IncompleteLU
class  IncompleteLUT
 Incomplete LU factorization with dual-threshold strategy. More...
class  InnerStride
 Convenience specialization of Stride to specify only an inner stride See class Map for some examples. More...
class  IOFormat
 Stores a set of parameters controlling the way matrices are printed. More...
class  IterationController
 Controls the iterations of the iterative solvers. More...
class  IterativeSolverBase
 Base class for linear iterative solvers. More...
class  IterScaling
class  JacobiRotation
 Rotation given by a cosine-sine pair. More...
class  JacobiSVD
 Two-sided Jacobi SVD decomposition of a rectangular matrix. More...
class  KdBVH
 A simple bounding volume hierarchy based on AlignedBox. More...
class  KroneckerProduct
 Kronecker tensor product helper class for dense matrices. More...
class  KroneckerProductSparse
 Kronecker tensor product helper class for sparse matrices. More...
struct  LazyProductReturnType
class  LDLT
 Robust Cholesky decomposition of a matrix with pivoting. More...
class  LevenbergMarquardt
 Performs non linear optimization over a non-linear function, using a variant of the Levenberg Marquardt algorithm. More...
class  LLT
 Standard Cholesky decomposition (LL^T) of a matrix and associated features. More...
class  LU
class  Map
 A matrix or vector expression mapping an existing array of data. More...
class  Map< const Quaternion< _Scalar >, _Options >
 Quaternion expression mapping a constant memory buffer. More...
class  Map< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, IndexType >, _PacketAccess >
class  Map< Quaternion< _Scalar >, _Options >
 Expression of a quaternion from a memory buffer. More...
class  Map< Transpositions< SizeAtCompileTime, MaxSizeAtCompileTime, IndexType >, PacketAccess >
class  MapBase< Derived, ReadOnlyAccessors >
class  MapBase< Derived, WriteAccessors >
class  MappedSparseMatrix
 Sparse matrix. More...
class  Matrix
 The matrix class, also used for vectors and row-vectors. More...
class  MatrixBase
 Base class for all dense matrices, vectors, and expressions. More...
class  MatrixExponential
 Class for computing the matrix exponential. More...
struct  MatrixExponentialReturnValue
 Proxy for the matrix exponential of some matrix (expression). More...
class  MatrixFunction
 Class for computing matrix functions. More...
class  MatrixFunction< MatrixType, AtomicType, 0 >
class  MatrixFunction< MatrixType, AtomicType, 1 >
class  MatrixFunctionAtomic
 Helper class for computing matrix functions of atomic matrices. More...
class  MatrixFunctionReturnValue
 Proxy for the matrix function of some matrix (expression). More...
class  MatrixLogarithmAtomic
 Helper class for computing matrix logarithm of atomic matrices. More...
class  MatrixLogarithmReturnValue
 Proxy for the matrix logarithm of some matrix (expression). More...
class  MatrixMarketIterator
 Iterator to browse matrices from a specified folder. More...
class  MatrixPower
 Class for computing matrix powers. More...
class  MatrixPowerAtomic
class  MatrixPowerReturnValue
 Proxy for the matrix power of some matrix (expression). More...
class  MatrixPowerRetval
class  MatrixSquareRoot
 Class for computing matrix square roots of general matrices. More...
class  MatrixSquareRoot< MatrixType, 0 >
class  MatrixSquareRoot< MatrixType, 1 >
class  MatrixSquareRootQuasiTriangular
 Class for computing matrix square roots of upper quasi-triangular matrices. More...
class  MatrixSquareRootReturnValue
 Proxy for the matrix square root of some matrix (expression). More...
class  MatrixSquareRootTriangular
 Class for computing matrix square roots of upper triangular matrices. More...
class  MatrixWrapper
 Expression of an array as a mathematical vector or matrix. More...
struct  MatrixXpr
class  MetisOrdering
class  Minor
 Expression of a minor. More...
class  MINRES
 A minimal residual solver for sparse symmetric problems. More...
class  NaturalOrdering
class  NestByValue
 Expression which must be nested by value. More...
class  NoAlias
 Pseudo expression providing an operator = assuming no aliasing. More...
class  NumericalDiff
class  NumTraits
 Holds information about the various numeric (i.e. scalar) types allowed by Eigen. More...
struct  NumTraits< Array< Scalar, Rows, Cols, Options, MaxRows, MaxCols > >
struct  NumTraits< double >
struct  NumTraits< float >
struct  NumTraits< long double >
struct  NumTraits< short int >
struct  NumTraits< std::complex< _Real > >
struct  NumTraits< unsigned char >
class  OuterStride
 Convenience specialization of Stride to specify only an outer stride See class Map for some examples. More...
class  ParametrizedLine
 A parametrized line. More...
class  PardisoImpl
class  PardisoLDLT
 A sparse direct Cholesky (LDLT) factorization and solver based on the PARDISO library. More...
class  PardisoLLT
 A sparse direct Cholesky (LLT) factorization and solver based on the PARDISO library. More...
class  PardisoLU
 A sparse direct LU factorization and solver based on the PARDISO library. More...
class  PartialPivLU
 LU decomposition of a matrix with partial pivoting, and related features. More...
class  PartialReduxExpr
 Generic expression of a partially reduxed matrix. More...
class  PastixBase
class  PastixLDLT
 A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library. More...
class  PastixLLT
 A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library. More...
class  PastixLU
 Sparse direct LU solver based on PaStiX library. More...
class  PermutationBase
 Base class for permutations. More...
class  PermutationMatrix
 Permutation matrix. More...
struct  PermutationStorage
class  PermutationWrapper
 Class to view a vector of integers as a permutation matrix. More...
class  PlainObjectBase
 Dense storage base class for matrices and arrays. More...
class  PolynomialSolver
 A polynomial solver. More...
class  PolynomialSolver< _Scalar, 1 >
class  PolynomialSolverBase
 Defined to be inherited by polynomial solvers: it provides convenient methods such as. More...
class  ProductBase
class  ProductReturnType
 Helper class to get the correct and optimized returned type of operator*. More...
struct  ProductReturnType< Lhs, Rhs, CoeffBasedProductMode >
struct  ProductReturnType< Lhs, Rhs, LazyCoeffBasedProductMode >
class  QR
class  Quaternion
 The quaternion class used to represent 3D orientations and rotations. More...
class  QuaternionBase
 Base class for quaternion expressions. More...
class  RandomSetter
 The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access. More...
class  RealQZ
 Performs a real QZ decomposition of a pair of square matrices. More...
class  RealSchur
 Performs a real Schur decomposition of a square matrix. More...
class  Ref
 A matrix or vector expression mapping an existing expressions. More...
class  Ref< const TPlainObjectType, Options, StrideType >
class  RefBase
class  Replicate
 Expression of the multiple replication of a matrix or vector. More...
class  ReturnByValue
class  Reverse
 Expression of the reverse of a vector or matrix. More...
class  Rotation2D
 Represents a rotation/orientation in a 2 dimensional space. More...
class  RotationBase
 Common base class for compact rotation representations. More...
class  ScaledProduct
class  Scaling
 Represents a possibly non uniform scaling transformation. More...
class  Select
 Expression of a coefficient wise version of the C++ ternary operator ?: More...
struct  selfadjoint_product_selector< MatrixType, OtherType, UpLo, false >
struct  selfadjoint_product_selector< MatrixType, OtherType, UpLo, true >
struct  selfadjoint_rank1_update< Scalar, Index, ColMajor, UpLo, ConjLhs, ConjRhs >
struct  selfadjoint_rank1_update< Scalar, Index, RowMajor, UpLo, ConjLhs, ConjRhs >
class  SelfAdjointEigenSolver
 Computes eigenvalues and eigenvectors of selfadjoint matrices. More...
struct  SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >
struct  SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >
struct  SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >
class  SelfAdjointView
 Expression of a selfadjoint matrix from a triangular part of a dense matrix. More...
class  SelfCwiseBinaryOp
class  SimplicialCholesky
class  SimplicialCholeskyBase
 A direct sparse Cholesky factorizations. More...
class  SimplicialLDLT
 A direct sparse LDLT Cholesky factorizations without square root. More...
class  SimplicialLLT
 A direct sparse LLT Cholesky factorizations. More...
class  SkylineInplaceLU
 Inplace LU decomposition of a skyline matrix and associated features. More...
class  SkylineMatrix
 The main skyline matrix class. More...
class  SkylineMatrixBase
 Base class of any skyline matrices or skyline expressions. More...
struct  SkylineProductReturnType
class  SkylineStorage
struct  SluMatrix
struct  SluMatrixMapHelper< Matrix< Scalar, Rows, Cols, Options, MRows, MCols > >
struct  SluMatrixMapHelper< SparseMatrixBase< Derived > >
class  SparseDenseOuterProduct
struct  SparseDenseProductReturnType
struct  SparseDenseProductReturnType< Lhs, Rhs, 1 >
class  SparseDiagonalProduct
struct  SparseFunctor
class  SparseLU
 Sparse supernodal LU factorization for general matrices. More...
struct  SparseLUMatrixLReturnType
struct  SparseLUMatrixUReturnType
class  SparseMatrix
 A versatible sparse matrix representation. More...
class  SparseMatrixBase
 Base class of any sparse matrices or sparse expressions. More...
class  SparseQR
 Sparse left-looking rank-revealing QR factorization. More...
struct  SparseQR_QProduct
struct  SparseQRMatrixQReturnType
struct  SparseQRMatrixQTransposeReturnType
class  SparseSelfAdjointTimeDenseProduct
class  SparseSelfAdjointView
 Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. More...
class  SparseSparseProduct
struct  SparseSparseProductReturnType
class  SparseSymmetricPermutationProduct
class  SparseTimeDenseProduct
class  SparseTriangularView
class  SparseVector
 a sparse vector class More...
class  SparseView
class  Spline
 A class representing multi-dimensional spline curves. More...
struct  SplineFitting
 Spline fitting methods. More...
struct  SplineTraits
struct  SplineTraits< Spline< _Scalar, _Dim, _Degree >, _DerivativeOrder >
 Compile-time attributes of the Spline class for fixed degree. More...
struct  SplineTraits< Spline< _Scalar, _Dim, _Degree >, Dynamic >
 Compile-time attributes of the Spline class for Dynamic degree. More...
class  SPQR
 Sparse QR factorization based on SuiteSparseQR library. More...
struct  SPQR_QProduct
struct  SPQRMatrixQReturnType
struct  SPQRMatrixQTransposeReturnType
struct  StdMapTraits
class  StdStemFunctions
 Stem functions corresponding to standard mathematical functions. More...
class  Stride
 Holds strides information for Map. More...
class  SuperLU
 A sparse direct LU factorization and solver based on the SuperLU library. More...
class  SuperLUBase
 The base class for the direct and incomplete LU factorization of SuperLU. More...
class  SVD
 Standard SVD decomposition of a matrix and associated features. More...
class  SVDBase
 Mother class of SVD classes algorithms. More...
class  SwapWrapper
class  Transform
 Represents an homogeneous transformation in a N dimensional space. More...
class  Translation
 Represents a translation transformation. More...
class  Transpose
 Expression of the transpose of a matrix. More...
class  Transpose< PermutationBase< Derived > >
class  Transpose< TranspositionsBase< TranspositionsDerived > >
class  TransposeImpl< MatrixType, Dense >
class  TransposeImpl< MatrixType, Sparse >
class  Transpositions
 Represents a sequence of transpositions (row/column interchange) More...
class  TranspositionsBase
class  TranspositionsWrapper
class  TriangularBase
struct  TriangularProduct< Mode, false, Lhs, true, Rhs, false >
struct  TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >
struct  TriangularProduct< Mode, true, Lhs, false, Rhs, true >
class  TriangularView
 Base class for triangular part in a matrix. More...
class  Tridiagonalization
 Tridiagonal decomposition of a selfadjoint matrix. More...
class  Triplet
 A small structure to hold a non zero as a triplet (i,j,value). More...
class  UmfPackLU
 A sparse LU factorization and solver based on UmfPack. More...
class  UniformScaling
class  VectorBlock
 Expression of a fixed-size or dynamic-size sub-vector. More...
class  VectorwiseOp
 Pseudo expression providing partial reduction operations. More...
class  WithFormat
 Pseudo expression providing matrix output with given format. More...

Typedefs

typedef Transform< double,
2, Affine
Affine2d
typedef Transform< float,
2, Affine
Affine2f
typedef Transform< double,
3, Affine
Affine3d
typedef Transform< float,
3, Affine
Affine3f
typedef Transform< double,
2, AffineCompact
AffineCompact2d
typedef Transform< float,
2, AffineCompact
AffineCompact2f
typedef Transform< double,
3, AffineCompact
AffineCompact3d
typedef Transform< float,
3, AffineCompact
AffineCompact3f
typedef DiagonalMatrix< double, 2 > AlignedScaling2d
typedef DiagonalMatrix< float, 2 > AlignedScaling2f
typedef DiagonalMatrix< double, 3 > AlignedScaling3d
typedef DiagonalMatrix< float, 3 > AlignedScaling3f
typedef AngleAxis< double > AngleAxisd
typedef AngleAxis< float > AngleAxisf
typedef
EIGEN_DEFAULT_DENSE_INDEX_TYPE 
DenseIndex
typedef Transform< double,
2, Isometry
Isometry2d
typedef Transform< float,
2, Isometry
Isometry2f
typedef Transform< double,
3, Isometry
Isometry3d
typedef Transform< float,
3, Isometry
Isometry3f
typedef Transform< double,
2, Projective
Projective2d
typedef Transform< float,
2, Projective
Projective2f
typedef Transform< double,
3, Projective
Projective3d
typedef Transform< float,
3, Projective
Projective3f
typedef Quaternion< double > Quaterniond
typedef Quaternion< float > Quaternionf
typedef Map< Quaternion
< double >, Aligned
QuaternionMapAlignedd
typedef Map< Quaternion< float >
, Aligned
QuaternionMapAlignedf
typedef Map< Quaternion
< double >, 0 > 
QuaternionMapd
typedef Map< Quaternion< float >, 0 > QuaternionMapf
typedef Rotation2D< double > Rotation2Dd
typedef Rotation2D< float > Rotation2Df
typedef Scaling< double, 2 > Scaling2d
typedef Scaling< float, 2 > Scaling2f
typedef Scaling< double, 3 > Scaling3d
typedef Scaling< float, 3 > Scaling3f
typedef Spline< double, 2 > Spline2d
 2D double B-spline with dynamic degree.
typedef Spline< float, 2 > Spline2f
 2D float B-spline with dynamic degree.
typedef Spline< double, 3 > Spline3d
 3D double B-spline with dynamic degree.
typedef Spline< float, 3 > Spline3f
 3D float B-spline with dynamic degree.
typedef Transform< double, 2 > Transform2d
typedef Transform< float, 2 > Transform2f
typedef Transform< double, 3 > Transform3d
typedef Transform< float, 3 > Transform3f
typedef Translation< double, 2 > Translation2d
typedef Translation< float, 2 > Translation2f
typedef Translation< double, 3 > Translation3d
typedef Translation< float, 3 > Translation3f

Enumerations

enum  { Large = 2, Small = 3 }
enum  { DontAlignCols = 1 }
enum  { StreamPrecision = -1, FullPrecision = -2 }
enum  {
  Lower = 0x1, Upper = 0x2, UnitDiag = 0x4, ZeroDiag = 0x8,
  UnitLower = UnitDiag|Lower, UnitUpper = UnitDiag|Upper, StrictlyLower = ZeroDiag|Lower, StrictlyUpper = ZeroDiag|Upper,
  SelfAdjoint = 0x10, Symmetric = 0x20
}
enum  { Unaligned = 0, Aligned = 1 }
enum  {
  DefaultTraversal, LinearTraversal, InnerVectorizedTraversal, LinearVectorizedTraversal,
  SliceVectorizedTraversal, InvalidTraversal, AllAtOnceTraversal
}
enum  { NoUnrolling, InnerUnrolling, CompleteUnrolling }
enum  { Specialized, BuiltIn }
enum  { ColMajor = 0, RowMajor = 0x1, AutoAlign = 0, DontAlign = 0x2 }
enum  { OnTheLeft = 1, OnTheRight = 2 }
enum  { IsDense = 0, IsSparse }
enum  {
  CoeffBasedProductMode, LazyCoeffBasedProductMode, OuterProduct, InnerProduct,
  GemvProduct, GemmProduct
}
enum  { IsSkyline = SkylineBit }
enum  { SPD = 0x100, NonSymmetric = 0x0 }
enum  AccessorLevels { ReadOnlyAccessors, WriteAccessors, DirectAccessors, DirectWriteAccessors }
enum  Action { GetAction, SetAction }
enum  AdditionalProductEvaluationMode { SkylineTimeDenseProduct, SkylineTimeSkylineProduct, DenseTimeSkylineProduct }
enum  CholmodMode { CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt }
enum  ComputationInfo { Success = 0, NumericalIssue = 1, NoConvergence = 2, InvalidInput = 3 }
enum  CornerType { TopLeft, TopRight, BottomLeft, BottomRight }
enum  DecompositionOptions {
  Pivoting = 0x01, NoPivoting = 0x02, ComputeFullU = 0x04, ComputeThinU = 0x08,
  ComputeFullV = 0x10, ComputeThinV = 0x20, EigenvaluesOnly = 0x40, ComputeEigenvectors = 0x80,
  EigVecMask = EigenvaluesOnly | ComputeEigenvectors, Ax_lBx = 0x100, ABx_lx = 0x200, BAx_lx = 0x400,
  GenEigMask = Ax_lBx | ABx_lx | BAx_lx
}
enum  Default_t { Default }
enum  DirectionType { Vertical, Horizontal, BothDirections }
enum  NoChange_t { NoChange }
enum  NumericalDiffMode { Forward, Central }
enum  QRPreconditioners { NoQRPreconditioner, HouseholderQRPreconditioner, ColPivHouseholderQRPreconditioner, FullPivHouseholderQRPreconditioner }
enum  Sequential_t { Sequential }
enum  SimplicialCholeskyMode { SimplicialCholeskyLLT, SimplicialCholeskyLDLT }
enum  TransformTraits { Isometry = 0x1, Affine = 0x2, AffineCompact = 0x10 | Affine, Projective = 0x20 }

Functions

template<typename DerTypeA , typename DerTypeB >
const AutoDiffScalar< Matrix
< typename internal::traits
< DerTypeA >::Scalar, Dynamic, 1 > > 
atan2 (const AutoDiffScalar< DerTypeA > &a, const AutoDiffScalar< DerTypeB > &b)
template<typename DerType , typename T >
 AutoDiffScalar< DerType > (min)(const AutoDiffScalar< DerType > &x
T AutoDiffScalar< DerType > (max)(const AutoDiffScalar< DerType > &x
template<typename SplineType , typename DerivativeType >
void basisFunctionDerivativesImpl (const SplineType &spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType &N_)
template<typename Scalar , int Dim>
AlignedBox< Scalar, Dim > bounding_box (const Matrix< Scalar, Dim, 1 > &v)
template<typename BVH , typename Intersector >
void BVIntersect (const BVH &tree, Intersector &intersector)
template<typename BVH1 , typename BVH2 , typename Intersector >
void BVIntersect (const BVH1 &tree1, const BVH2 &tree2, Intersector &intersector)
template<typename BVH , typename Minimizer >
Minimizer::Scalar BVMinimize (const BVH &tree, Minimizer &minimizer)
template<typename BVH1 , typename BVH2 , typename Minimizer >
Minimizer::Scalar BVMinimize (const BVH1 &tree1, const BVH2 &tree2, Minimizer &minimizer)
template<typename Polynomial >
NumTraits< typename
Polynomial::Scalar >::Real 
cauchy_max_bound (const Polynomial &poly)
template<typename Polynomial >
NumTraits< typename
Polynomial::Scalar >::Real 
cauchy_min_bound (const Polynomial &poly)
template<typename Scalar >
std::complex< Scalar > cdiv (const Scalar &xr, const Scalar &xi, const Scalar &yr, const Scalar &yi)
template<typename PointArrayType , typename KnotVectorType >
void ChordLengths (const PointArrayType &pts, KnotVectorType &chord_lengths)
 Computes chord length parameters which are required for spline interpolation.
template<typename DerType >
const AutoDiffScalar< DerType > & conj (const AutoDiffScalar< DerType > &x)
template<typename SplineType , typename DerivativeType >
void derivativesImpl (const SplineType &spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType &der)
void dsaupd_ (int *ido, char *bmat, int *n, char *which, int *nev, double *tol, double *resid, int *ncv, double *v, int *ldv, int *iparam, int *ipntr, double *workd, double *workl, int *lworkl, int *info)
void dseupd_ (int *rvec, char *All, int *select, double *d, double *z, int *ldz, double *sigma, char *bmat, int *n, char *which, int *nev, double *tol, double *resid, int *ncv, double *v, int *ldv, int *iparam, int *ipntr, double *workd, double *workl, int *lworkl, int *ierr)
template<typename T >
NumTraits< T >::Real ei_abs (const T &x)
template<typename T >
NumTraits< T >::Real ei_abs2 (const T &x)
template<typename T >
void ei_aligned_delete (T *ptr, size_t size)
void ei_aligned_free (void *ptr)
void * ei_aligned_malloc (size_t size)
template<typename T >
Tei_aligned_new (size_t size)
void * ei_aligned_realloc (void *ptr, size_t new_size, size_t old_size)
template<typename T >
T ei_atan2 (const T &x, const T &y)
template<bool Align>
void ei_conditional_aligned_free (void *ptr)
template<bool Align>
void * ei_conditional_aligned_malloc (size_t size)
template<bool Align>
void * ei_conditional_aligned_realloc (void *ptr, size_t new_size, size_t old_size)
template<typename T >
T ei_conj (const T &x)
template<typename T >
T ei_cos (const T &x)
template<typename T >
T ei_exp (const T &x)
void ei_handmade_aligned_free (void *ptr)
void * ei_handmade_aligned_malloc (size_t size)
template<typename T >
NumTraits< T >::Real ei_imag (const T &x)
template<typename Scalar >
bool ei_isApprox (const Scalar &x, const Scalar &y, typename NumTraits< Scalar >::Real precision=NumTraits< Scalar >::dummy_precision())
template<typename Scalar >
bool ei_isApproxOrLessThan (const Scalar &x, const Scalar &y, typename NumTraits< Scalar >::Real precision=NumTraits< Scalar >::dummy_precision())
template<typename Scalar , typename OtherScalar >
bool ei_isMuchSmallerThan (const Scalar &x, const OtherScalar &y, typename NumTraits< Scalar >::Real precision=NumTraits< Scalar >::dummy_precision())
template<typename T >
T ei_log (const T &x)
template<typename T >
T ei_pow (const T &x, const T &y)
template<typename Scalar >
Quaternion< Scalar > ei_quaternion_product (const Quaternion< Scalar > &a, const Quaternion< Scalar > &b)
template<typename T >
T ei_random ()
template<typename T >
T ei_random (const T &x, const T &y)
template<typename T >
NumTraits< T >::Real ei_real (const T &x)
template<typename T >
T ei_sin (const T &x)
template<typename T >
T ei_sqrt (const T &x)
template<typename Scalar , int Dim>
static Matrix< Scalar, 2, 2 > ei_toRotationMatrix (const Scalar &s)
template<typename Scalar , int Dim, typename OtherDerived >
static Matrix< Scalar, Dim, Dim > ei_toRotationMatrix (const RotationBase< OtherDerived, Dim > &r)
template<typename Scalar , int Dim, typename OtherDerived >
static const MatrixBase
< OtherDerived > & 
ei_toRotationMatrix (const MatrixBase< OtherDerived > &mat)
 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (tan, using std::tan;using std::cos;return ReturnType(tan(x.value()), x.derivatives()*(Scalar(1)/numext::abs2(cos(x.value()))));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin
 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (acos, using std::sqrt;using std::acos;return ReturnType(acos(x.value()), x.derivatives()*(Scalar(-1)/sqrt(1-numext::abs2(x.value()))));) template< typename DerType > struct NumTraits< AutoDiffScalar< DerType > >
template<typename OtherDerived >
EIGEN_STRONG_INLINE const EIGEN_CWISE_BINOP_RETURN_TYPE (internal::scalar_quotient_op) Cwise< ExpressionType >
template<typename OtherDerived >
const EIGEN_CWISE_BINOP_RETURN_TYPE (std::less) Cwise< ExpressionType >
template<typename OtherDerived >
const EIGEN_CWISE_BINOP_RETURN_TYPE (std::less_equal) Cwise< ExpressionType >
template<typename OtherDerived >
const EIGEN_CWISE_BINOP_RETURN_TYPE (std::greater) Cwise< ExpressionType >
template<typename OtherDerived >
const EIGEN_CWISE_BINOP_RETURN_TYPE (std::greater_equal) Cwise< ExpressionType >
template<typename OtherDerived >
const EIGEN_CWISE_BINOP_RETURN_TYPE (std::equal_to) Cwise< ExpressionType >
template<typename OtherDerived >
const EIGEN_CWISE_BINOP_RETURN_TYPE (std::not_equal_to) Cwise< ExpressionType >
template<typename ExpressionType >
const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE (std::less) Cwise< ExpressionType >
template<typename ExpressionType >
const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE (std::less_equal) Cwise< ExpressionType >
template<typename ExpressionType >
const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE (std::greater) Cwise< ExpressionType >
template<typename ExpressionType >
const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE (std::greater_equal) Cwise< ExpressionType >
template<typename ExpressionType >
const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE (std::equal_to) Cwise< ExpressionType >
template<typename ExpressionType >
const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE (std::not_equal_to) Cwise< ExpressionType >
template<typename OtherDerived >
EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE (ExpressionType, OtherDerived) Cwise< ExpressionType >
template<typename ExpressionType >
EIGEN_STRONG_INLINE const EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_abs_op) Cwise< ExpressionType >
template<typename ExpressionType >
EIGEN_STRONG_INLINE const EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_abs2_op) Cwise< ExpressionType >
template<typename ExpressionType >
const EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_exp_op) Cwise< ExpressionType >
template<typename ExpressionType >
const EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_log_op) Cwise< ExpressionType >
template<typename ExpressionType >
const EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_sqrt_op) Cwise< ExpressionType >
template<typename ExpressionType >
const EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_cos_op) Cwise< ExpressionType >
template<typename ExpressionType >
const EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_sin_op) Cwise< ExpressionType >
template<typename ExpressionType >
const EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_pow_op) Cwise< ExpressionType >
template<typename ExpressionType >
const EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_inverse_op) Cwise< ExpressionType >
template<typename ExpressionType >
const EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_square_op) Cwise< ExpressionType >
template<typename ExpressionType >
const EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_cube_op) Cwise< ExpressionType >
template<typename VectorType , typename HyperplaneType >
void fitHyperplane (int numPoints, VectorType **points, HyperplaneType *result, typename NumTraits< typename VectorType::Scalar >::Real *soundness=0)
bool getMarketHeader (const std::string &filename, int &sym, bool &iscomplex, bool &isvector)
template<typename VectorsType , typename CoeffsType >
HouseholderSequence
< VectorsType, CoeffsType > 
householderSequence (const VectorsType &v, const CoeffsType &h)
 Convenience function for constructing a Householder sequence.
template<typename DerType >
DerType::Scalar imag (const AutoDiffScalar< DerType > &)
void initParallel ()
template<typename KnotVectorType >
void KnotAveraging (const KnotVectorType &parameters, DenseIndex degree, KnotVectorType &knots)
 Computes knot averages.The knots are computed as

\begin{align*} u_0 & = \hdots = u_p = 0 \\ u_{m-p} & = \hdots = u_{m} = 1 \\ u_{j+p} & = \frac{1}{p}\sum_{i=j}^{j+p-1}\bar{u}_i \quad\quad j=1,\hdots,n-p \end{align*}

where $p$ is the degree and $m+1$ the number knots of the desired interpolating spline.

template<typename A , typename B >
KroneckerProduct< A, B > kroneckerProduct (const MatrixBase< A > &a, const MatrixBase< B > &b)
template<typename A , typename B >
KroneckerProductSparse< A, B > kroneckerProduct (const EigenBase< A > &a, const EigenBase< B > &b)
std::ptrdiff_t l1CacheSize ()
std::ptrdiff_t l2CacheSize ()
template<typename VectorType >
void linearRegression (int numPoints, VectorType **points, VectorType *result, int funcOfOthers)
template<typename SparseMatrixType >
bool loadMarket (SparseMatrixType &mat, const std::string &filename)
template<typename VectorType >
bool loadMarketVector (VectorType &vec, const std::string &filename)
template<typename T >
T machine_epsilon ()
int nbThreads ()
template<typename SparseDerived , typename PermDerived >
const
internal::permut_sparsematrix_product_retval
< PermutationBase< PermDerived >
, SparseDerived, OnTheRight,
false > 
operator* (const SparseMatrixBase< SparseDerived > &matrix, const PermutationBase< PermDerived > &perm)
template<typename SparseDerived , typename PermDerived >
const
internal::permut_sparsematrix_product_retval
< PermutationBase< PermDerived >
, SparseDerived, OnTheLeft,
false > 
operator* (const PermutationBase< PermDerived > &perm, const SparseMatrixBase< SparseDerived > &matrix)
template<typename SparseDerived , typename PermDerived >
const
internal::permut_sparsematrix_product_retval
< PermutationBase< PermDerived >
, SparseDerived, OnTheRight,
true > 
operator* (const SparseMatrixBase< SparseDerived > &matrix, const Transpose< PermutationBase< PermDerived > > &tperm)
template<typename SparseDerived , typename PermDerived >
const
internal::permut_sparsematrix_product_retval
< PermutationBase< PermDerived >
, SparseDerived, OnTheLeft,
true > 
operator* (const Transpose< PermutationBase< PermDerived > > &tperm, const SparseMatrixBase< SparseDerived > &matrix)
template<typename Derived , typename Lhs , typename Rhs >
const ScaledProduct< Derived > operator* (const ProductBase< Derived, Lhs, Rhs > &prod, const typename Derived::Scalar &x)
template<typename Derived , typename Lhs , typename Rhs >
internal::enable_if
<!internal::is_same< typename
Derived::Scalar, typename
Derived::RealScalar >::value,
const ScaledProduct< Derived >
>::type 
operator* (const ProductBase< Derived, Lhs, Rhs > &prod, const typename Derived::RealScalar &x)
template<typename Derived , typename Lhs , typename Rhs >
const ScaledProduct< Derived > operator* (const typename Derived::Scalar &x, const ProductBase< Derived, Lhs, Rhs > &prod)
template<typename Derived , typename Lhs , typename Rhs >
internal::enable_if
<!internal::is_same< typename
Derived::Scalar, typename
Derived::RealScalar >::value,
const ScaledProduct< Derived >
>::type 
operator* (const typename Derived::RealScalar &x, const ProductBase< Derived, Lhs, Rhs > &prod)
template<typename Derived , typename TranspositionsDerived >
const
internal::transposition_matrix_product_retval
< TranspositionsDerived,
Derived, OnTheRight
operator* (const MatrixBase< Derived > &matrix, const TranspositionsBase< TranspositionsDerived > &transpositions)
template<typename Derived , typename TranspositionDerived >
const
internal::transposition_matrix_product_retval
< TranspositionDerived,
Derived, OnTheLeft
operator* (const TranspositionsBase< TranspositionDerived > &transpositions, const MatrixBase< Derived > &matrix)
template<typename OtherDerived , typename VectorsType , typename CoeffsType , int Side>
internal::matrix_type_times_scalar_type
< typename VectorsType::Scalar,
OtherDerived >::Type 
operator* (const MatrixBase< OtherDerived > &other, const HouseholderSequence< VectorsType, CoeffsType, Side > &h)
 Computes the product of a matrix with a Householder sequence.
template<typename Derived , typename PermutationDerived >
const
internal::permut_matrix_product_retval
< PermutationDerived, Derived,
OnTheRight
operator* (const MatrixBase< Derived > &matrix, const PermutationBase< PermutationDerived > &permutation)
template<typename Derived , typename PermutationDerived >
const
internal::permut_matrix_product_retval
< PermutationDerived, Derived,
OnTheLeft
operator* (const PermutationBase< PermutationDerived > &permutation, const MatrixBase< Derived > &matrix)
template<typename Derived >
const Eigen::CwiseUnaryOp
< Eigen::internal::scalar_inverse_mult_op
< typename Derived::Scalar >
, const Derived > 
operator/ (const typename Derived::Scalar &s, const Eigen::ArrayBase< Derived > &a)
 Component-wise division of a scalar by array elements.
template<typename Polynomials , typename T >
T poly_eval (const Polynomials &poly, const T &x)
template<typename Polynomials , typename T >
T poly_eval_horner (const Polynomials &poly, const T &x)
template<typename Derived >
const Eigen::CwiseUnaryOp
< Eigen::internal::scalar_pow_op
< typename Derived::Scalar >
, const Derived > 
pow (const Eigen::ArrayBase< Derived > &x, const typename Derived::Scalar &exponent)
template<typename Derived >
const Eigen::CwiseBinaryOp
< Eigen::internal::scalar_binary_pow_op
< typename Derived::Scalar,
typename Derived::Scalar >
, const Derived, const Derived > 
pow (const Eigen::ArrayBase< Derived > &x, const Eigen::ArrayBase< Derived > &exponents)
const DerType pow (const Eigen::AutoDiffScalar< DerType > &x, typename Eigen::internal::traits< DerType >::Scalar y)
template<typename T >
T precision ()
template<typename DerType >
const AutoDiffScalar< DerType > & real (const AutoDiffScalar< DerType > &x)
return ReturnType (asin(x.value()), x.derivatives()*(Scalar(1)/sqrt(1-numext::abs2(x.value()))))
template<typename VectorsType , typename CoeffsType >
HouseholderSequence
< VectorsType, CoeffsType,
OnTheRight
rightHouseholderSequence (const VectorsType &v, const CoeffsType &h)
 Convenience function for constructing a Householder sequence.
template<typename RootVector , typename Polynomial >
void roots_to_monicPolynomial (const RootVector &rv, Polynomial &poly)
template<typename SparseMatrixType >
bool saveMarket (const SparseMatrixType &mat, const std::string &filename, int sym=0)
template<typename VectorType >
bool saveMarketVector (const VectorType &vec, const std::string &filename)
static UniformScaling< float > Scaling (float s)
static UniformScaling< double > Scaling (double s)
template<typename RealScalar >
static UniformScaling
< std::complex< RealScalar > > 
Scaling (const std::complex< RealScalar > &s)
template<typename Scalar >
static DiagonalMatrix< Scalar, 2 > Scaling (const Scalar &sx, const Scalar &sy)
template<typename Scalar >
static DiagonalMatrix< Scalar, 3 > Scaling (const Scalar &sx, const Scalar &sy, const Scalar &sz)
template<typename Derived >
static const DiagonalWrapper
< const Derived > 
Scaling (const MatrixBase< Derived > &coeffs)
void setCpuCacheSizes (std::ptrdiff_t l1, std::ptrdiff_t l2)
void setNbThreads (int v)
void ssaupd_ (int *ido, char *bmat, int *n, char *which, int *nev, float *tol, float *resid, int *ncv, float *v, int *ldv, int *iparam, int *ipntr, float *workd, float *workl, int *lworkl, int *info)
void sseupd_ (int *rvec, char *All, int *select, float *d, float *z, int *ldz, float *sigma, char *bmat, int *n, char *which, int *nev, float *tol, float *resid, int *ncv, float *v, int *ldv, int *iparam, int *ipntr, float *workd, float *workl, int *lworkl, int *ierr)
template<typename Derived , typename OtherDerived >
internal::umeyama_transform_matrix_type
< Derived, OtherDerived >
::type 
umeyama (const MatrixBase< Derived > &src, const MatrixBase< OtherDerived > &dst, bool with_scaling=true)
 Returns the transformation between two point sets.
void umfpack_free_numeric (void **Numeric, double)
void umfpack_free_numeric (void **Numeric, std::complex< double >)
void umfpack_free_symbolic (void **Symbolic, double)
void umfpack_free_symbolic (void **Symbolic, std::complex< double >)
int umfpack_get_determinant (double *Mx, double *Ex, void *NumericHandle, double User_Info[UMFPACK_INFO])
int umfpack_get_determinant (std::complex< double > *Mx, double *Ex, void *NumericHandle, double User_Info[UMFPACK_INFO])
int umfpack_get_lunz (int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
int umfpack_get_lunz (int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex< double >)
int umfpack_get_numeric (int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[], int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
int umfpack_get_numeric (int Lp[], int Lj[], std::complex< double > Lx[], int Up[], int Ui[], std::complex< double > Ux[], int P[], int Q[], std::complex< double > Dx[], int *do_recip, double Rs[], void *Numeric)
int umfpack_numeric (const int Ap[], const int Ai[], const double Ax[], void *Symbolic, void **Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
int umfpack_numeric (const int Ap[], const int Ai[], const std::complex< double > Ax[], void *Symbolic, void **Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
int umfpack_solve (int sys, const int Ap[], const int Ai[], const double Ax[], double X[], const double B[], void *Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
int umfpack_solve (int sys, const int Ap[], const int Ai[], const std::complex< double > Ax[], std::complex< double > X[], const std::complex< double > B[], void *Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
int umfpack_symbolic (int n_row, int n_col, const int Ap[], const int Ai[], const double Ax[], void **Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
int umfpack_symbolic (int n_row, int n_col, const int Ap[], const int Ai[], const std::complex< double > Ax[], void **Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
template<typename _Scalar , int _Options, typename _Index >
cholmod_sparse viewAsCholmod (SparseMatrix< _Scalar, _Options, _Index > &mat)
template<typename _Scalar , int _Options, typename _Index >
const cholmod_sparse viewAsCholmod (const SparseMatrix< _Scalar, _Options, _Index > &mat)
template<typename _Scalar , int _Options, typename _Index , unsigned int UpLo>
cholmod_sparse viewAsCholmod (const SparseSelfAdjointView< SparseMatrix< _Scalar, _Options, _Index >, UpLo > &mat)
template<typename Derived >
cholmod_dense viewAsCholmod (MatrixBase< Derived > &mat)
template<typename Scalar , int Flags, typename Index >
MappedSparseMatrix< Scalar,
Flags, Index > 
viewAsEigen (cholmod_sparse &cm)

Variables

const unsigned int ActualPacketAccessBit = 0x0
const unsigned int AlignedBit = 0x80
const int CoherentAccessPattern = 0x1
const unsigned int DirectAccessBit = 0x40
const int Dynamic = -1
const int DynamicIndex = 0xffffff
const unsigned int EvalBeforeAssigningBit = 0x4
const unsigned int EvalBeforeNestingBit = 0x2
const unsigned int HereditaryBits
const int Infinity = -1
const int InnerRandomAccessPattern = 0x2 | CoherentAccessPattern
const unsigned int LinearAccessBit = 0x10
const unsigned int LowerTriangular = Lower
const unsigned int LowerTriangularBit = Lower
const unsigned int LvalueBit = 0x20
const unsigned int NestByRefBit = 0x100
const int OuterRandomAccessPattern = 0x4 | CoherentAccessPattern
const unsigned int PacketAccessBit = 0x8
const int RandomAccessPattern = 0x8 | OuterRandomAccessPattern | InnerRandomAccessPattern
const unsigned int RowMajorBit = 0x1
const unsigned int SelfAdjointBit = SelfAdjoint
const unsigned int SkylineBit = 0x1200
const unsigned int UnitDiagBit = UnitDiag
const unsigned int UnitLowerTriangular = UnitLower
const unsigned int UnitUpperTriangular = UnitUpper
const unsigned int UpperTriangular = Upper
const unsigned int UpperTriangularBit = Upper

Detailed Description

iterative scaling algorithm to equilibrate rows and column norms in matrices

This class can be used as a preprocessing tool to accelerate the convergence of iterative methods

This feature is useful to limit the pivoting amount during LU/ILU factorization The scaling strategy as presented here preserves the symmetry of the problem NOTE It is assumed that the matrix does not have empty row or column,

Example with key steps

 VectorXd x(n), b(n);
 SparseMatrix<double> A;
 // fill A and b;
 IterScaling<SparseMatrix<double> > scal; 
 // Compute the left and right scaling vectors. The matrix is equilibrated at output
 scal.computeRef(A); 
 // Scale the right hand side
 b = scal.LeftScaling().cwiseProduct(b); 
 // Now, solve the equilibrated linear system with any available solver
 
 // Scale back the computed solution
 x = scal.RightScaling().cwiseProduct(x); 
Template Parameters:
_MatrixTypethe type of the matrix. It should be a real square sparsematrix

References : D. Ruiz and B. Ucar, A Symmetry Preserving Algorithm for Matrix Scaling, INRIA Research report RR-7552

See also:
IncompleteLUT

Typedef Documentation

Definition at line 27 of file XprHelper.h.

typedef Spline<double,2> Eigen::Spline2d

2D double B-spline with dynamic degree.

Definition at line 80 of file SplineFwd.h.

typedef Spline<float,2> Eigen::Spline2f

2D float B-spline with dynamic degree.

Definition at line 74 of file SplineFwd.h.

typedef Spline<double,3> Eigen::Spline3d

3D double B-spline with dynamic degree.

Definition at line 83 of file SplineFwd.h.

typedef Spline<float,3> Eigen::Spline3f

3D float B-spline with dynamic degree.

Definition at line 77 of file SplineFwd.h.


Enumeration Type Documentation

anonymous enum
Enumerator:
Large 
Small 

Definition at line 38 of file GeneralProduct.h.

anonymous enum
Enumerator:
DontAlignCols 

Definition at line 16 of file IO.h.

anonymous enum
Enumerator:
StreamPrecision 
FullPrecision 

Definition at line 17 of file IO.h.

anonymous enum
Enumerator:
DefaultTraversal 
LinearTraversal 
InnerVectorizedTraversal 
LinearVectorizedTraversal 
SliceVectorizedTraversal 
InvalidTraversal 
AllAtOnceTraversal 

Definition at line 220 of file Constants.h.

anonymous enum
Enumerator:
NoUnrolling 
InnerUnrolling 
CompleteUnrolling 

Definition at line 242 of file Constants.h.

anonymous enum
Enumerator:
Specialized 
BuiltIn 

Definition at line 254 of file Constants.h.

anonymous enum
Enumerator:
IsDense 
IsSparse 

Definition at line 300 of file Constants.h.

anonymous enum
Enumerator:
CoeffBasedProductMode 
LazyCoeffBasedProductMode 
OuterProduct 
InnerProduct 
GemvProduct 
GemmProduct 

Definition at line 421 of file Constants.h.

anonymous enum
Enumerator:
IsSkyline 

Definition at line 24 of file SkylineUtil.h.

anonymous enum
Enumerator:
SPD 
NonSymmetric 

Definition at line 16 of file MatrixMarketIterator.h.

Enumerator:
GetAction 
SetAction 

Definition at line 425 of file Constants.h.

Enumerator:
SkylineTimeDenseProduct 
SkylineTimeSkylineProduct 
DenseTimeSkylineProduct 

Definition at line 23 of file SkylineUtil.h.

Enumerator:
CholmodAuto 
CholmodSimplicialLLt 
CholmodSupernodalLLt 
CholmodLDLt 

Definition at line 149 of file CholmodSupport.h.

Enumerator:
Default 

Definition at line 296 of file Constants.h.

Enumerator:
NoChange 

Definition at line 294 of file Constants.h.

Enumerator:
Forward 
Central 

Definition at line 18 of file NumericalDiff.h.

Enumerator:
Sequential 

Definition at line 295 of file Constants.h.

Enumerator:
SimplicialCholeskyLLT 
SimplicialCholeskyLDLT 

Definition at line 15 of file SimplicialCholesky.h.


Function Documentation

template<typename DerTypeA , typename DerTypeB >
const AutoDiffScalar<Matrix<typename internal::traits<DerTypeA>::Scalar,Dynamic,1> > Eigen::atan2 ( const AutoDiffScalar< DerTypeA > &  a,
const AutoDiffScalar< DerTypeB > &  b 
) [inline]

Definition at line 593 of file AutoDiffScalar.h.

template<typename DerType , typename T >
T Eigen::AutoDiffScalar< DerType > ( min  ) const [inline]
T Eigen::AutoDiffScalar< DerType > ( max  ) const [inline]
template<typename SplineType , typename DerivativeType >
void Eigen::basisFunctionDerivativesImpl ( const SplineType &  spline,
typename SplineType::Scalar  u,
DenseIndex  order,
DerivativeType &  N_ 
)

Definition at line 350 of file Spline.h.

template<typename Scalar , int Dim>
AlignedBox<Scalar, Dim> Eigen::bounding_box ( const Matrix< Scalar, Dim, 1 > &  v)

Definition at line 17 of file BVH.cpp.

template<typename BVH , typename Intersector >
void Eigen::BVIntersect ( const BVH &  tree,
Intersector &  intersector 
)

Given a BVH, runs the query encapsulated by intersector. The Intersector type must provide the following members:

     bool intersectVolume(const BVH::Volume &volume) //returns true if volume intersects the query
     bool intersectObject(const BVH::Object &object) //returns true if the search should terminate immediately

Definition at line 79 of file BVAlgorithms.h.

template<typename BVH1 , typename BVH2 , typename Intersector >
void Eigen::BVIntersect ( const BVH1 &  tree1,
const BVH2 &  tree2,
Intersector &  intersector 
)

Given two BVH's, runs the query on their Cartesian product encapsulated by intersector. The Intersector type must provide the following members:

     bool intersectVolumeVolume(const BVH1::Volume &v1, const BVH2::Volume &v2) //returns true if product of volumes intersects the query
     bool intersectVolumeObject(const BVH1::Volume &v1, const BVH2::Object &o2) //returns true if the volume-object product intersects the query
     bool intersectObjectVolume(const BVH1::Object &o1, const BVH2::Volume &v2) //returns true if the volume-object product intersects the query
     bool intersectObjectObject(const BVH1::Object &o1, const BVH2::Object &o2) //returns true if the search should terminate immediately

Definition at line 93 of file BVAlgorithms.h.

template<typename BVH , typename Minimizer >
Minimizer::Scalar Eigen::BVMinimize ( const BVH &  tree,
Minimizer &  minimizer 
)

Given a BVH, runs the query encapsulated by minimizer.

Returns:
the minimum value. The Minimizer type must provide the following members:
     typedef Scalar //the numeric type of what is being minimized--not necessarily the Scalar type of the BVH (if it has one)
     Scalar minimumOnVolume(const BVH::Volume &volume)
     Scalar minimumOnObject(const BVH::Object &object)

Definition at line 219 of file BVAlgorithms.h.

template<typename BVH1 , typename BVH2 , typename Minimizer >
Minimizer::Scalar Eigen::BVMinimize ( const BVH1 &  tree1,
const BVH2 &  tree2,
Minimizer &  minimizer 
)

Given two BVH's, runs the query on their cartesian product encapsulated by minimizer.

Returns:
the minimum value. The Minimizer type must provide the following members:
     typedef Scalar //the numeric type of what is being minimized--not necessarily the Scalar type of the BVH (if it has one)
     Scalar minimumOnVolumeVolume(const BVH1::Volume &v1, const BVH2::Volume &v2)
     Scalar minimumOnVolumeObject(const BVH1::Volume &v1, const BVH2::Object &o2)
     Scalar minimumOnObjectVolume(const BVH1::Object &o1, const BVH2::Volume &v2)
     Scalar minimumOnObjectObject(const BVH1::Object &o1, const BVH2::Object &o2)

Definition at line 235 of file BVAlgorithms.h.

template<typename Polynomial >
NumTraits<typename Polynomial::Scalar>::Real Eigen::cauchy_max_bound ( const Polynomial &  poly) [inline]
Returns:
a maximum bound for the absolute value of any root of the polynomial.
Parameters:
[in]poly: the vector of coefficients of the polynomial ordered by degrees i.e. poly[i] is the coefficient of degree i of the polynomial e.g. $ 1 + 3x^2 $ is stored as a vector $ [ 1, 0, 3 ] $.

Precondition: the leading coefficient of the input polynomial poly must be non zero

Definition at line 75 of file PolynomialUtils.h.

template<typename Polynomial >
NumTraits<typename Polynomial::Scalar>::Real Eigen::cauchy_min_bound ( const Polynomial &  poly) [inline]
Returns:
a minimum bound for the absolute value of any non zero root of the polynomial.
Parameters:
[in]poly: the vector of coefficients of the polynomial ordered by degrees i.e. poly[i] is the coefficient of degree i of the polynomial e.g. $ 1 + 3x^2 $ is stored as a vector $ [ 1, 0, 3 ] $.

Definition at line 98 of file PolynomialUtils.h.

template<typename Scalar >
std::complex<Scalar> Eigen::cdiv ( const Scalar &  xr,
const Scalar &  xi,
const Scalar &  yr,
const Scalar &  yi 
)

Definition at line 422 of file EigenSolver.h.

template<typename PointArrayType , typename KnotVectorType >
void Eigen::ChordLengths ( const PointArrayType &  pts,
KnotVectorType &  chord_lengths 
)

Computes chord length parameters which are required for spline interpolation.

Parameters:
[in]ptsThe data points to which a spline should be fit.
[out]chord_lengthsThe resulting chord lenggth vector.
See also:
Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data

Definition at line 62 of file SplineFitting.h.

template<typename DerType >
const AutoDiffScalar<DerType>& Eigen::conj ( const AutoDiffScalar< DerType > &  x) [inline]

Definition at line 533 of file AutoDiffScalar.h.

template<typename SplineType , typename DerivativeType >
void Eigen::derivativesImpl ( const SplineType &  spline,
typename SplineType::Scalar  u,
DenseIndex  order,
DerivativeType &  der 
)

Definition at line 292 of file Spline.h.

void Eigen::dsaupd_ ( int *  ido,
char *  bmat,
int *  n,
char *  which,
int *  nev,
double *  tol,
double *  resid,
int *  ncv,
double *  v,
int *  ldv,
int *  iparam,
int *  ipntr,
double *  workd,
double *  workl,
int *  lworkl,
int *  info 
)
void Eigen::dseupd_ ( int *  rvec,
char *  All,
int *  select,
double *  d,
double *  z,
int *  ldz,
double *  sigma,
char *  bmat,
int *  n,
char *  which,
int *  nev,
double *  tol,
double *  resid,
int *  ncv,
double *  v,
int *  ldv,
int *  iparam,
int *  ipntr,
double *  workd,
double *  workl,
int *  lworkl,
int *  ierr 
)
template<typename T >
NumTraits<T>::Real Eigen::ei_abs ( const T x) [inline]

Definition at line 18 of file Eigen/src/Eigen2Support/MathFunctions.h.

template<typename T >
NumTraits<T>::Real Eigen::ei_abs2 ( const T x) [inline]

Definition at line 19 of file Eigen/src/Eigen2Support/MathFunctions.h.

template<typename T >
void Eigen::ei_aligned_delete ( T ptr,
size_t  size 
) [inline]

Definition at line 38 of file Eigen2Support/Memory.h.

void Eigen::ei_aligned_free ( void *  ptr) [inline]

Definition at line 16 of file Eigen2Support/Memory.h.

void* Eigen::ei_aligned_malloc ( size_t  size) [inline]

Definition at line 15 of file Eigen2Support/Memory.h.

template<typename T >
T* Eigen::ei_aligned_new ( size_t  size) [inline]

Definition at line 34 of file Eigen2Support/Memory.h.

void* Eigen::ei_aligned_realloc ( void *  ptr,
size_t  new_size,
size_t  old_size 
) [inline]

Definition at line 17 of file Eigen2Support/Memory.h.

template<typename T >
T Eigen::ei_atan2 ( const T x,
const T y 
) [inline]

Definition at line 25 of file Eigen/src/Eigen2Support/MathFunctions.h.

template<bool Align>
void Eigen::ei_conditional_aligned_free ( void *  ptr) [inline]

Definition at line 25 of file Eigen2Support/Memory.h.

template<bool Align>
void* Eigen::ei_conditional_aligned_malloc ( size_t  size) [inline]

Definition at line 21 of file Eigen2Support/Memory.h.

template<bool Align>
void* Eigen::ei_conditional_aligned_realloc ( void *  ptr,
size_t  new_size,
size_t  old_size 
) [inline]

Definition at line 29 of file Eigen2Support/Memory.h.

template<typename T >
T Eigen::ei_conj ( const T x) [inline]

Definition at line 17 of file Eigen/src/Eigen2Support/MathFunctions.h.

template<typename T >
T Eigen::ei_cos ( const T x) [inline]

Definition at line 24 of file Eigen/src/Eigen2Support/MathFunctions.h.

template<typename T >
T Eigen::ei_exp ( const T x) [inline]

Definition at line 21 of file Eigen/src/Eigen2Support/MathFunctions.h.

void Eigen::ei_handmade_aligned_free ( void *  ptr) [inline]

Definition at line 19 of file Eigen2Support/Memory.h.

void* Eigen::ei_handmade_aligned_malloc ( size_t  size) [inline]

Definition at line 18 of file Eigen2Support/Memory.h.

template<typename T >
NumTraits<T>::Real Eigen::ei_imag ( const T x) [inline]

Definition at line 16 of file Eigen/src/Eigen2Support/MathFunctions.h.

template<typename Scalar >
bool Eigen::ei_isApprox ( const Scalar &  x,
const Scalar &  y,
typename NumTraits< Scalar >::Real  precision = NumTraits<Scalar>::dummy_precision() 
) [inline]

Definition at line 42 of file Eigen/src/Eigen2Support/MathFunctions.h.

template<typename Scalar >
bool Eigen::ei_isApproxOrLessThan ( const Scalar &  x,
const Scalar &  y,
typename NumTraits< Scalar >::Real  precision = NumTraits<Scalar>::dummy_precision() 
) [inline]

Definition at line 49 of file Eigen/src/Eigen2Support/MathFunctions.h.

template<typename Scalar , typename OtherScalar >
bool Eigen::ei_isMuchSmallerThan ( const Scalar &  x,
const OtherScalar &  y,
typename NumTraits< Scalar >::Real  precision = NumTraits<Scalar>::dummy_precision() 
) [inline]

Definition at line 35 of file Eigen/src/Eigen2Support/MathFunctions.h.

template<typename T >
T Eigen::ei_log ( const T x) [inline]

Definition at line 22 of file Eigen/src/Eigen2Support/MathFunctions.h.

template<typename T >
T Eigen::ei_pow ( const T x,
const T y 
) [inline]

Definition at line 26 of file Eigen/src/Eigen2Support/MathFunctions.h.

template<typename Scalar >
Quaternion<Scalar> Eigen::ei_quaternion_product ( const Quaternion< Scalar > &  a,
const Quaternion< Scalar > &  b 
) [inline]

Definition at line 215 of file Eigen2Support/Geometry/Quaternion.h.

template<typename T >
T Eigen::ei_random ( ) [inline]

Definition at line 27 of file Eigen/src/Eigen2Support/MathFunctions.h.

template<typename T >
T Eigen::ei_random ( const T x,
const T y 
) [inline]

Definition at line 28 of file Eigen/src/Eigen2Support/MathFunctions.h.

template<typename T >
NumTraits<T>::Real Eigen::ei_real ( const T x) [inline]

Definition at line 15 of file Eigen/src/Eigen2Support/MathFunctions.h.

template<typename T >
T Eigen::ei_sin ( const T x) [inline]

Definition at line 23 of file Eigen/src/Eigen2Support/MathFunctions.h.

template<typename T >
T Eigen::ei_sqrt ( const T x) [inline]

Definition at line 20 of file Eigen/src/Eigen2Support/MathFunctions.h.

template<typename Scalar , int Dim>
static Matrix<Scalar,2,2> Eigen::ei_toRotationMatrix ( const Scalar &  s) [inline, static]

Definition at line 103 of file Eigen2Support/Geometry/RotationBase.h.

template<typename Scalar , int Dim, typename OtherDerived >
static Matrix<Scalar,Dim,Dim> Eigen::ei_toRotationMatrix ( const RotationBase< OtherDerived, Dim > &  r) [inline, static]

Definition at line 110 of file Eigen2Support/Geometry/RotationBase.h.

template<typename Scalar , int Dim, typename OtherDerived >
static const MatrixBase<OtherDerived>& Eigen::ei_toRotationMatrix ( const MatrixBase< OtherDerived > &  mat) [inline, static]

Definition at line 116 of file Eigen2Support/Geometry/RotationBase.h.

Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY ( tan  ,
using std::tan;using std::cos;return ReturnType(tan(x.value()), x.derivatives()*(Scalar(1)/numext::abs2(cos(x.value()))));   
)
Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY ( acos  ,
using std::sqrt;using std::acos;return ReturnType(acos(x.value()), x.derivatives()*(Scalar(-1)/sqrt(1-numext::abs2(x.value()))));   
)

Definition at line 622 of file AutoDiffScalar.h.

template<typename OtherDerived >
EIGEN_STRONG_INLINE const Eigen::EIGEN_CWISE_BINOP_RETURN_TYPE ( internal::scalar_quotient_op  )
template<typename OtherDerived >
const Eigen::EIGEN_CWISE_BINOP_RETURN_TYPE ( std::less  ) [inline]
Deprecated:
ArrayBase::operator<()

Definition at line 157 of file CwiseOperators.h.

template<typename OtherDerived >
const Eigen::EIGEN_CWISE_BINOP_RETURN_TYPE ( std::less_equal  ) [inline]
Deprecated:
ArrayBase::<=()

Definition at line 166 of file CwiseOperators.h.

template<typename OtherDerived >
const Eigen::EIGEN_CWISE_BINOP_RETURN_TYPE ( std::greater  ) [inline]
template<typename OtherDerived >
const Eigen::EIGEN_CWISE_BINOP_RETURN_TYPE ( std::greater_equal  ) [inline]
Deprecated:
ArrayBase::operator>=()

Definition at line 184 of file CwiseOperators.h.

template<typename OtherDerived >
const Eigen::EIGEN_CWISE_BINOP_RETURN_TYPE ( std::equal_to  ) [inline]
template<typename OtherDerived >
const Eigen::EIGEN_CWISE_BINOP_RETURN_TYPE ( std::not_equal_to  ) [inline]
Deprecated:
ArrayBase::operator!=()

Definition at line 202 of file CwiseOperators.h.

template<typename ExpressionType >
const Eigen::EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE ( std::less  ) [inline]
Deprecated:
ArrayBase::operator<(Scalar)

Definition at line 212 of file CwiseOperators.h.

template<typename ExpressionType >
const Eigen::EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE ( std::less_equal  ) [inline]
Deprecated:
ArrayBase::operator<=(Scalar)

Definition at line 221 of file CwiseOperators.h.

template<typename ExpressionType >
const Eigen::EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE ( std::greater  ) [inline]
Deprecated:
ArrayBase::operator>(Scalar)

Definition at line 230 of file CwiseOperators.h.

template<typename ExpressionType >
const Eigen::EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE ( std::greater_equal  ) [inline]
Deprecated:
ArrayBase::operator>=(Scalar)

Definition at line 239 of file CwiseOperators.h.

template<typename ExpressionType >
const Eigen::EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE ( std::equal_to  ) [inline]
Deprecated:
ArrayBase::operator==(Scalar)

Definition at line 248 of file CwiseOperators.h.

template<typename ExpressionType >
const Eigen::EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE ( std::not_equal_to  ) [inline]
Deprecated:
ArrayBase::operator!=(Scalar)

Definition at line 257 of file CwiseOperators.h.

template<typename OtherDerived >
EIGEN_STRONG_INLINE const Eigen::EIGEN_CWISE_PRODUCT_RETURN_TYPE ( ExpressionType  ,
OtherDerived   
)
template<typename ExpressionType >
EIGEN_STRONG_INLINE const Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE ( internal::scalar_abs_op  )
Deprecated:
ArrayBase::abs()

Definition at line 22 of file CwiseOperators.h.

template<typename ExpressionType >
EIGEN_STRONG_INLINE const Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE ( internal::scalar_abs2_op  )
Deprecated:
ArrayBase::abs2()

Definition at line 30 of file CwiseOperators.h.

template<typename ExpressionType >
const Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE ( internal::scalar_exp_op  ) [inline]
Deprecated:
ArrayBase::exp()

Definition at line 38 of file CwiseOperators.h.

template<typename ExpressionType >
const Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE ( internal::scalar_log_op  ) [inline]
Deprecated:
ArrayBase::log()

Definition at line 46 of file CwiseOperators.h.

template<typename ExpressionType >
const Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE ( internal::scalar_sqrt_op  ) [inline]
Deprecated:
ArrayBase::sqrt()

Definition at line 94 of file CwiseOperators.h.

template<typename ExpressionType >
const Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE ( internal::scalar_cos_op  ) [inline]
Deprecated:
ArrayBase::cos()

Definition at line 102 of file CwiseOperators.h.

template<typename ExpressionType >
const Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE ( internal::scalar_sin_op  ) [inline]
Deprecated:
ArrayBase::sin()

Definition at line 111 of file CwiseOperators.h.

template<typename ExpressionType >
const Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE ( internal::scalar_pow_op  ) [inline]
Deprecated:
ArrayBase::log()

Definition at line 120 of file CwiseOperators.h.

template<typename ExpressionType >
const Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE ( internal::scalar_inverse_op  ) [inline]
template<typename ExpressionType >
const Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE ( internal::scalar_square_op  ) [inline]
template<typename ExpressionType >
const Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE ( internal::scalar_cube_op  ) [inline]
Deprecated:
ArrayBase::cube()

Definition at line 145 of file CwiseOperators.h.

template<typename VectorType , typename HyperplaneType >
void Eigen::fitHyperplane ( int  numPoints,
VectorType **  points,
HyperplaneType *  result,
typename NumTraits< typename VectorType::Scalar >::Real *  soundness = 0 
)

This function is quite similar to linearRegression(), so we refer to the documentation of this function and only list here the differences.

The main difference from linearRegression() is that this function doesn't take a funcOfOthers argument. Instead, it finds a general equation of the form

\[ r_0 x_0 + \cdots + r_{n-1}x_{n-1} + r_n = 0, \]

where $n=Size$, $r_i=retCoefficients[i]$, and we denote by $x_0,\ldots,x_{n-1}$ the n coordinates in the n-dimensional space.

Thus, the vector retCoefficients has size $n+1$, which is another difference from linearRegression().

In practice, this function performs an hyper-plane fit in a total least square sense via the following steps: 1 - center the data to the mean 2 - compute the covariance matrix 3 - pick the eigenvector corresponding to the smallest eigenvalue of the covariance matrix The ratio of the smallest eigenvalue and the second one gives us a hint about the relevance of the solution. This value is optionally returned in soundness.

See also:
linearRegression()

Definition at line 130 of file LeastSquares.h.

bool Eigen::getMarketHeader ( const std::string &  filename,
int &  sym,
bool &  iscomplex,
bool &  isvector 
) [inline]

Definition at line 109 of file MarketIO.h.

template<typename VectorsType , typename CoeffsType >
HouseholderSequence<VectorsType,CoeffsType> Eigen::householderSequence ( const VectorsType &  v,
const CoeffsType &  h 
)

Convenience function for constructing a Householder sequence.

\

Returns:
A HouseholderSequence constructed from the specified arguments.

Definition at line 422 of file HouseholderSequence.h.

template<typename DerType >
DerType::Scalar Eigen::imag ( const AutoDiffScalar< DerType > &  ) [inline]

Definition at line 537 of file AutoDiffScalar.h.

void Eigen::initParallel ( ) [inline]

Must be call first when calling Eigen from multiple threads

Definition at line 48 of file Parallelizer.h.

template<typename KnotVectorType >
void Eigen::KnotAveraging ( const KnotVectorType &  parameters,
DenseIndex  degree,
KnotVectorType &  knots 
)

Computes knot averages.The knots are computed as

\begin{align*} u_0 & = \hdots = u_p = 0 \\ u_{m-p} & = \hdots = u_{m} = 1 \\ u_{j+p} & = \frac{1}{p}\sum_{i=j}^{j+p-1}\bar{u}_i \quad\quad j=1,\hdots,n-p \end{align*}

where $p$ is the degree and $m+1$ the number knots of the desired interpolating spline.

Parameters:
[in]parametersThe input parameters. During interpolation one for each data point.
[in]degreeThe spline degree which is used during the interpolation.
[out]knotsThe output knot vector.
See also:
Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data

Definition at line 41 of file SplineFitting.h.

template<typename A , typename B >
KroneckerProduct<A,B> Eigen::kroneckerProduct ( const MatrixBase< A > &  a,
const MatrixBase< B > &  b 
)

Computes Kronecker tensor product of two dense matrices

Warning:
If you want to replace a matrix by its Kronecker product with some matrix, do NOT do this:
 A = kroneckerProduct(A,B); // bug!!! caused by aliasing effect
instead, use eval() to work around this:
 A = kroneckerProduct(A,B).eval();
Parameters:
aDense matrix a
bDense matrix b
Returns:
Kronecker tensor product of a and b

Definition at line 220 of file KroneckerTensorProduct.h.

template<typename A , typename B >
KroneckerProductSparse<A,B> Eigen::kroneckerProduct ( const EigenBase< A > &  a,
const EigenBase< B > &  b 
)

Computes Kronecker tensor product of two matrices, at least one of which is sparse

Parameters:
aDense/sparse matrix a
bDense/sparse matrix b
Returns:
Kronecker tensor product of a and b, stored in a sparse matrix

Definition at line 237 of file KroneckerTensorProduct.h.

std::ptrdiff_t Eigen::l1CacheSize ( ) [inline]
Returns:
the currently set level 1 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
See also:
setCpuCacheSize

Definition at line 1313 of file GeneralBlockPanelKernel.h.

std::ptrdiff_t Eigen::l2CacheSize ( ) [inline]
Returns:
the currently set level 2 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
See also:
setCpuCacheSize

Definition at line 1322 of file GeneralBlockPanelKernel.h.

template<typename VectorType >
void Eigen::linearRegression ( int  numPoints,
VectorType **  points,
VectorType *  result,
int  funcOfOthers 
)

For a set of points, this function tries to express one of the coords as a linear (affine) function of the other coords.

This is best explained by an example. This function works in full generality, for points in a space of arbitrary dimension, and also over the complex numbers, but for this example we will work in dimension 3 over the real numbers (doubles).

So let us work with the following set of 5 points given by their $(x,y,z)$ coordinates:

    Vector3d points[5];
    points[0] = Vector3d( 3.02, 6.89, -4.32 );
    points[1] = Vector3d( 2.01, 5.39, -3.79 );
    points[2] = Vector3d( 2.41, 6.01, -4.01 );
    points[3] = Vector3d( 2.09, 5.55, -3.86 );
    points[4] = Vector3d( 2.58, 6.32, -4.10 );

Suppose that we want to express the second coordinate ( $y$) as a linear expression in $x$ and $z$, that is,

\[ y=ax+bz+c \]

for some constants $a,b,c$. Thus, we want to find the best possible constants $a,b,c$ so that the plane of equation $y=ax+bz+c$ fits best the five above points. To do that, call this function as follows:

    Vector3d coeffs; // will store the coefficients a, b, c
    linearRegression(
      5,
      &points,
      &coeffs,
      1 // the coord to express as a function of
        // the other ones. 0 means x, 1 means y, 2 means z.
    );

Now the vector coeffs is approximately $( 0.495 , -1.927 , -2.906 )$. Thus, we get $a=0.495, b = -1.927, c = -2.906$. Let us check for instance how near points[0] is from the plane of equation $y=ax+bz+c$. Looking at the coords of points[0], we see that:

\[ax+bz+c = 0.495 * 3.02 + (-1.927) * (-4.32) + (-2.906) = 6.91.\]

On the other hand, we have $y=6.89$. We see that the values $6.91$ and $6.89$ are near, so points[0] is very near the plane of equation $y=ax+bz+c$.

Let's now describe precisely the parameters:

Parameters:
numPointsthe number of points
pointsthe array of pointers to the points on which to perform the linear regression
resultpointer to the vector in which to store the result. This vector must be of the same type and size as the data points. The meaning of its coords is as follows. For brevity, let $n=Size$, $r_i=result[i]$, and $f=funcOfOthers$. Denote by $x_0,\ldots,x_{n-1}$ the n coordinates in the n-dimensional space. Then the resulting equation is:

\[ x_f = r_0 x_0 + \cdots + r_{f-1}x_{f-1} + r_{f+1}x_{f+1} + \cdots + r_{n-1}x_{n-1} + r_n. \]

funcOfOthersDetermines which coord to express as a function of the others. Coords are numbered starting from 0, so that a value of 0 means $x$, 1 means $y$, 2 means $z$, ...
See also:
fitHyperplane()

Definition at line 85 of file LeastSquares.h.

template<typename SparseMatrixType >
bool Eigen::loadMarket ( SparseMatrixType &  mat,
const std::string &  filename 
)

Definition at line 133 of file MarketIO.h.

template<typename VectorType >
bool Eigen::loadMarketVector ( VectorType &  vec,
const std::string &  filename 
)

Definition at line 192 of file MarketIO.h.

template<typename T >
T Eigen::machine_epsilon ( ) [inline]

Definition at line 31 of file Eigen/src/Eigen2Support/MathFunctions.h.

int Eigen::nbThreads ( ) [inline]
Returns:
the max number of threads reserved for Eigen
See also:
setNbThreads

Definition at line 58 of file Parallelizer.h.

template<typename SparseDerived , typename PermDerived >
const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheRight, false> Eigen::operator* ( const SparseMatrixBase< SparseDerived > &  matrix,
const PermutationBase< PermDerived > &  perm 
) [inline]
Returns:
the matrix with the permutation applied to the columns

Definition at line 112 of file SparsePermutation.h.

template<typename SparseDerived , typename PermDerived >
const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheLeft, false> Eigen::operator* ( const PermutationBase< PermDerived > &  perm,
const SparseMatrixBase< SparseDerived > &  matrix 
) [inline]
Returns:
the matrix with the permutation applied to the rows

Definition at line 121 of file SparsePermutation.h.

template<typename SparseDerived , typename PermDerived >
const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheRight, true> Eigen::operator* ( const SparseMatrixBase< SparseDerived > &  matrix,
const Transpose< PermutationBase< PermDerived > > &  tperm 
) [inline]
Returns:
the matrix with the inverse permutation applied to the columns.

Definition at line 132 of file SparsePermutation.h.

template<typename SparseDerived , typename PermDerived >
const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheLeft, true> Eigen::operator* ( const Transpose< PermutationBase< PermDerived > > &  tperm,
const SparseMatrixBase< SparseDerived > &  matrix 
) [inline]
Returns:
the matrix with the inverse permutation applied to the rows.

Definition at line 141 of file SparsePermutation.h.

template<typename Derived , typename Lhs , typename Rhs >
const ScaledProduct<Derived> Eigen::operator* ( const ProductBase< Derived, Lhs, Rhs > &  prod,
const typename Derived::Scalar &  x 
)

Definition at line 210 of file ProductBase.h.

template<typename Derived , typename Lhs , typename Rhs >
internal::enable_if<!internal::is_same<typename Derived::Scalar,typename Derived::RealScalar>::value, const ScaledProduct<Derived> >::type Eigen::operator* ( const ProductBase< Derived, Lhs, Rhs > &  prod,
const typename Derived::RealScalar &  x 
)

Definition at line 216 of file ProductBase.h.

template<typename Derived , typename Lhs , typename Rhs >
const ScaledProduct<Derived> Eigen::operator* ( const typename Derived::Scalar &  x,
const ProductBase< Derived, Lhs, Rhs > &  prod 
)

Definition at line 222 of file ProductBase.h.

template<typename Derived , typename Lhs , typename Rhs >
internal::enable_if<!internal::is_same<typename Derived::Scalar,typename Derived::RealScalar>::value, const ScaledProduct<Derived> >::type Eigen::operator* ( const typename Derived::RealScalar &  x,
const ProductBase< Derived, Lhs, Rhs > &  prod 
)

Definition at line 228 of file ProductBase.h.

template<typename Derived , typename TranspositionsDerived >
const internal::transposition_matrix_product_retval<TranspositionsDerived, Derived, OnTheRight> Eigen::operator* ( const MatrixBase< Derived > &  matrix,
const TranspositionsBase< TranspositionsDerived > &  transpositions 
) [inline]
Returns:
the matrix with the transpositions applied to the columns.

Definition at line 331 of file Transpositions.h.

template<typename Derived , typename TranspositionDerived >
const internal::transposition_matrix_product_retval<TranspositionDerived, Derived, OnTheLeft> Eigen::operator* ( const TranspositionsBase< TranspositionDerived > &  transpositions,
const MatrixBase< Derived > &  matrix 
) [inline]
Returns:
the matrix with the transpositions applied to the rows.

Definition at line 344 of file Transpositions.h.

template<typename OtherDerived , typename VectorsType , typename CoeffsType , int Side>
internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type Eigen::operator* ( const MatrixBase< OtherDerived > &  other,
const HouseholderSequence< VectorsType, CoeffsType, Side > &  h 
)

Computes the product of a matrix with a Householder sequence.

Parameters:
[in]otherMatrix being multiplied.
[in]hHouseholderSequence being multiplied.
Returns:
Expression object representing the product.

This function computes $ MH $ where $ M $ is the matrix other and $ H $ is the Householder sequence represented by h.

Definition at line 409 of file HouseholderSequence.h.

template<typename Derived , typename PermutationDerived >
const internal::permut_matrix_product_retval<PermutationDerived, Derived, OnTheRight> Eigen::operator* ( const MatrixBase< Derived > &  matrix,
const PermutationBase< PermutationDerived > &  permutation 
) [inline]
Returns:
the matrix with the permutation applied to the columns.

Definition at line 539 of file PermutationMatrix.h.

template<typename Derived , typename PermutationDerived >
const internal::permut_matrix_product_retval<PermutationDerived, Derived, OnTheLeft> Eigen::operator* ( const PermutationBase< PermutationDerived > &  permutation,
const MatrixBase< Derived > &  matrix 
) [inline]
Returns:
the matrix with the permutation applied to the rows.

Definition at line 552 of file PermutationMatrix.h.

template<typename Derived >
const Eigen::CwiseUnaryOp<Eigen::internal::scalar_inverse_mult_op<typename Derived::Scalar>, const Derived> Eigen::operator/ ( const typename Derived::Scalar &  s,
const Eigen::ArrayBase< Derived > &  a 
) [inline]

Component-wise division of a scalar by array elements.

Definition at line 74 of file GlobalFunctions.h.

template<typename Polynomials , typename T >
T Eigen::poly_eval ( const Polynomials &  poly,
const T x 
) [inline]
Returns:
the evaluation of the polynomial at x using stabilized Horner algorithm.
Parameters:
[in]poly: the vector of coefficients of the polynomial ordered by degrees i.e. poly[i] is the coefficient of degree i of the polynomial e.g. $ 1 + 3x^2 $ is stored as a vector $ [ 1, 0, 3 ] $.
[in]x: the value to evaluate the polynomial at.

Definition at line 46 of file PolynomialUtils.h.

template<typename Polynomials , typename T >
T Eigen::poly_eval_horner ( const Polynomials &  poly,
const T x 
) [inline]
Returns:
the evaluation of the polynomial at x using Horner algorithm.
Parameters:
[in]poly: the vector of coefficients of the polynomial ordered by degrees i.e. poly[i] is the coefficient of degree i of the polynomial e.g. $ 1 + 3x^2 $ is stored as a vector $ [ 1, 0, 3 ] $.
[in]x: the value to evaluate the polynomial at.

Note for stability: $ |x| \le 1 $

Definition at line 28 of file PolynomialUtils.h.

template<typename Derived >
const Eigen::CwiseUnaryOp<Eigen::internal::scalar_pow_op<typename Derived::Scalar>, const Derived> Eigen::pow ( const Eigen::ArrayBase< Derived > &  x,
const typename Derived::Scalar &  exponent 
) [inline]

Definition at line 55 of file GlobalFunctions.h.

template<typename Derived >
const Eigen::CwiseBinaryOp<Eigen::internal::scalar_binary_pow_op<typename Derived::Scalar, typename Derived::Scalar>, const Derived, const Derived> Eigen::pow ( const Eigen::ArrayBase< Derived > &  x,
const Eigen::ArrayBase< Derived > &  exponents 
) [inline]

Definition at line 61 of file GlobalFunctions.h.

const DerType Eigen::pow ( const Eigen::AutoDiffScalar< DerType > &  x,
typename Eigen::internal::traits< DerType >::Scalar  y 
)

Definition at line 581 of file AutoDiffScalar.h.

template<typename T >
T Eigen::precision ( ) [inline]

Definition at line 30 of file Eigen/src/Eigen2Support/MathFunctions.h.

template<typename DerType >
const AutoDiffScalar<DerType>& Eigen::real ( const AutoDiffScalar< DerType > &  x) [inline]

Definition at line 535 of file AutoDiffScalar.h.

return Eigen::ReturnType ( asin(x.value())  ,
x.  derivatives)*(Scalar(1)/sqrt(1-numext::abs2(x.value())) 
)
template<typename VectorsType , typename CoeffsType >
HouseholderSequence<VectorsType,CoeffsType,OnTheRight> Eigen::rightHouseholderSequence ( const VectorsType &  v,
const CoeffsType &  h 
)

Convenience function for constructing a Householder sequence.

\

Returns:
A HouseholderSequence constructed from the specified arguments.

This function differs from householderSequence() in that the template argument OnTheSide of the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft.

Definition at line 434 of file HouseholderSequence.h.

template<typename RootVector , typename Polynomial >
void Eigen::roots_to_monicPolynomial ( const RootVector &  rv,
Polynomial &  poly 
)

Given the roots of a polynomial compute the coefficients in the monomial basis of the monic polynomial with same roots and minimal degree. If RootVector is a vector of complexes, Polynomial should also be a vector of complexes.

Parameters:
[in]rv: a vector containing the roots of a polynomial.
[out]poly: the vector of coefficients of the polynomial ordered by degrees i.e. poly[i] is the coefficient of degree i of the polynomial e.g. $ 3 + x^2 $ is stored as a vector $ [ 3, 0, 1 ] $.

Definition at line 127 of file PolynomialUtils.h.

template<typename SparseMatrixType >
bool Eigen::saveMarket ( const SparseMatrixType &  mat,
const std::string &  filename,
int  sym = 0 
)

Definition at line 224 of file MarketIO.h.

template<typename VectorType >
bool Eigen::saveMarketVector ( const VectorType &  vec,
const std::string &  filename 
)

Definition at line 250 of file MarketIO.h.

static UniformScaling<float> Eigen::Scaling ( float  s) [inline, static]

Constructs a uniform scaling from scale factor s

Definition at line 115 of file Eigen/src/Geometry/Scaling.h.

static UniformScaling<double> Eigen::Scaling ( double  s) [inline, static]

Constructs a uniform scaling from scale factor s

Definition at line 117 of file Eigen/src/Geometry/Scaling.h.

template<typename RealScalar >
static UniformScaling<std::complex<RealScalar> > Eigen::Scaling ( const std::complex< RealScalar > &  s) [inline, static]

Constructs a uniform scaling from scale factor s

Definition at line 120 of file Eigen/src/Geometry/Scaling.h.

template<typename Scalar >
static DiagonalMatrix<Scalar,2> Eigen::Scaling ( const Scalar &  sx,
const Scalar &  sy 
) [inline, static]

Constructs a 2D axis aligned scaling

Definition at line 125 of file Eigen/src/Geometry/Scaling.h.

template<typename Scalar >
static DiagonalMatrix<Scalar,3> Eigen::Scaling ( const Scalar &  sx,
const Scalar &  sy,
const Scalar &  sz 
) [inline, static]

Constructs a 3D axis aligned scaling

Definition at line 129 of file Eigen/src/Geometry/Scaling.h.

template<typename Derived >
static const DiagonalWrapper<const Derived> Eigen::Scaling ( const MatrixBase< Derived > &  coeffs) [inline, static]

Constructs an axis aligned scaling expression from vector expression coeffs This is an alias for coeffs.asDiagonal()

Definition at line 136 of file Eigen/src/Geometry/Scaling.h.

void Eigen::setCpuCacheSizes ( std::ptrdiff_t  l1,
std::ptrdiff_t  l2 
) [inline]

Set the cpu L1 and L2 cache sizes (in bytes). These values are use to adjust the size of the blocks for the algorithms working per blocks.

See also:
computeProductBlockingSizes

Definition at line 1334 of file GeneralBlockPanelKernel.h.

void Eigen::setNbThreads ( int  v) [inline]

Sets the max number of threads reserved for Eigen

See also:
nbThreads

Definition at line 67 of file Parallelizer.h.

void Eigen::ssaupd_ ( int *  ido,
char *  bmat,
int *  n,
char *  which,
int *  nev,
float *  tol,
float *  resid,
int *  ncv,
float *  v,
int *  ldv,
int *  iparam,
int *  ipntr,
float *  workd,
float *  workl,
int *  lworkl,
int *  info 
)
void Eigen::sseupd_ ( int *  rvec,
char *  All,
int *  select,
float *  d,
float *  z,
int *  ldz,
float *  sigma,
char *  bmat,
int *  n,
char *  which,
int *  nev,
float *  tol,
float *  resid,
int *  ncv,
float *  v,
int *  ldv,
int *  iparam,
int *  ipntr,
float *  workd,
float *  workl,
int *  lworkl,
int *  ierr 
)
void Eigen::umfpack_free_numeric ( void **  Numeric,
double   
) [inline]

Definition at line 19 of file UmfPackSupport.h.

void Eigen::umfpack_free_numeric ( void **  Numeric,
std::complex< double >   
) [inline]

Definition at line 22 of file UmfPackSupport.h.

void Eigen::umfpack_free_symbolic ( void **  Symbolic,
double   
) [inline]

Definition at line 25 of file UmfPackSupport.h.

void Eigen::umfpack_free_symbolic ( void **  Symbolic,
std::complex< double >   
) [inline]

Definition at line 28 of file UmfPackSupport.h.

int Eigen::umfpack_get_determinant ( double *  Mx,
double *  Ex,
void *  NumericHandle,
double  User_Info[UMFPACK_INFO] 
) [inline]

Definition at line 99 of file UmfPackSupport.h.

int Eigen::umfpack_get_determinant ( std::complex< double > *  Mx,
double *  Ex,
void *  NumericHandle,
double  User_Info[UMFPACK_INFO] 
) [inline]

Definition at line 104 of file UmfPackSupport.h.

int Eigen::umfpack_get_lunz ( int *  lnz,
int *  unz,
int *  n_row,
int *  n_col,
int *  nz_udiag,
void *  Numeric,
double   
) [inline]

Definition at line 73 of file UmfPackSupport.h.

int Eigen::umfpack_get_lunz ( int *  lnz,
int *  unz,
int *  n_row,
int *  n_col,
int *  nz_udiag,
void *  Numeric,
std::complex< double >   
) [inline]

Definition at line 78 of file UmfPackSupport.h.

int Eigen::umfpack_get_numeric ( int  Lp[],
int  Lj[],
double  Lx[],
int  Up[],
int  Ui[],
double  Ux[],
int  P[],
int  Q[],
double  Dx[],
int *  do_recip,
double  Rs[],
void *  Numeric 
) [inline]

Definition at line 83 of file UmfPackSupport.h.

int Eigen::umfpack_get_numeric ( int  Lp[],
int  Lj[],
std::complex< double >  Lx[],
int  Up[],
int  Ui[],
std::complex< double >  Ux[],
int  P[],
int  Q[],
std::complex< double >  Dx[],
int *  do_recip,
double  Rs[],
void *  Numeric 
) [inline]

Definition at line 89 of file UmfPackSupport.h.

int Eigen::umfpack_numeric ( const int  Ap[],
const int  Ai[],
const double  Ax[],
void *  Symbolic,
void **  Numeric,
const double  Control[UMFPACK_CONTROL],
double  Info[UMFPACK_INFO] 
) [inline]

Definition at line 45 of file UmfPackSupport.h.

int Eigen::umfpack_numeric ( const int  Ap[],
const int  Ai[],
const std::complex< double >  Ax[],
void *  Symbolic,
void **  Numeric,
const double  Control[UMFPACK_CONTROL],
double  Info[UMFPACK_INFO] 
) [inline]

Definition at line 52 of file UmfPackSupport.h.

int Eigen::umfpack_solve ( int  sys,
const int  Ap[],
const int  Ai[],
const double  Ax[],
double  X[],
const double  B[],
void *  Numeric,
const double  Control[UMFPACK_CONTROL],
double  Info[UMFPACK_INFO] 
) [inline]

Definition at line 59 of file UmfPackSupport.h.

int Eigen::umfpack_solve ( int  sys,
const int  Ap[],
const int  Ai[],
const std::complex< double >  Ax[],
std::complex< double >  X[],
const std::complex< double >  B[],
void *  Numeric,
const double  Control[UMFPACK_CONTROL],
double  Info[UMFPACK_INFO] 
) [inline]

Definition at line 66 of file UmfPackSupport.h.

int Eigen::umfpack_symbolic ( int  n_row,
int  n_col,
const int  Ap[],
const int  Ai[],
const double  Ax[],
void **  Symbolic,
const double  Control[UMFPACK_CONTROL],
double  Info[UMFPACK_INFO] 
) [inline]

Definition at line 31 of file UmfPackSupport.h.

int Eigen::umfpack_symbolic ( int  n_row,
int  n_col,
const int  Ap[],
const int  Ai[],
const std::complex< double >  Ax[],
void **  Symbolic,
const double  Control[UMFPACK_CONTROL],
double  Info[UMFPACK_INFO] 
) [inline]

Definition at line 38 of file UmfPackSupport.h.

template<typename _Scalar , int _Options, typename _Index >
cholmod_sparse Eigen::viewAsCholmod ( SparseMatrix< _Scalar, _Options, _Index > &  mat)

Wraps the Eigen sparse matrix mat into a Cholmod sparse matrix object. Note that the data are shared.

Definition at line 52 of file CholmodSupport.h.

template<typename _Scalar , int _Options, typename _Index >
const cholmod_sparse Eigen::viewAsCholmod ( const SparseMatrix< _Scalar, _Options, _Index > &  mat)

Definition at line 99 of file CholmodSupport.h.

template<typename _Scalar , int _Options, typename _Index , unsigned int UpLo>
cholmod_sparse Eigen::viewAsCholmod ( const SparseSelfAdjointView< SparseMatrix< _Scalar, _Options, _Index >, UpLo > &  mat)

Returns a view of the Eigen sparse matrix mat as Cholmod sparse matrix. The data are not copied but shared.

Definition at line 108 of file CholmodSupport.h.

template<typename Derived >
cholmod_dense Eigen::viewAsCholmod ( MatrixBase< Derived > &  mat)

Returns a view of the Eigen dense matrix mat as Cholmod dense matrix. The data are not copied but shared.

Definition at line 121 of file CholmodSupport.h.

template<typename Scalar , int Flags, typename Index >
MappedSparseMatrix<Scalar,Flags,Index> Eigen::viewAsEigen ( cholmod_sparse &  cm)

Returns a view of the Cholmod sparse matrix cm as an Eigen sparse matrix. The data are not copied but shared.

Definition at line 142 of file CholmodSupport.h.


Variable Documentation

const unsigned int Eigen::ActualPacketAccessBit = 0x0

Definition at line 94 of file Constants.h.

Definition at line 65 of file SparseUtil.h.

const int Eigen::Dynamic = -1

This value means that a positive quantity (e.g., a size) is not known at compile-time, and that instead the value is stored in some runtime variable.

Changing the value of Dynamic breaks the ABI, as Dynamic is often used as a template parameter for Matrix.

Definition at line 21 of file Constants.h.

const int Eigen::DynamicIndex = 0xffffff

This value means that a signed quantity (e.g., a signed index) is not known at compile-time, and that instead its value has to be specified at runtime.

Definition at line 26 of file Constants.h.

const unsigned int Eigen::HereditaryBits
Initial value:

Definition at line 152 of file Constants.h.

const int Eigen::Infinity = -1

This value means +Infinity; it is currently used only as the p parameter to MatrixBase::lpNorm<int>(). The value Infinity there means the L-infinity norm.

Definition at line 31 of file Constants.h.

const int Eigen::InnerRandomAccessPattern = 0x2 | CoherentAccessPattern

Definition at line 66 of file SparseUtil.h.

const unsigned int Eigen::LowerTriangular = Lower

Definition at line 21 of file Eigen2Support/TriangularSolver.h.

const unsigned int Eigen::LowerTriangularBit = Lower

Definition at line 18 of file Eigen2Support/TriangularSolver.h.

const unsigned int Eigen::NestByRefBit = 0x100

Definition at line 149 of file Constants.h.

const int Eigen::OuterRandomAccessPattern = 0x4 | CoherentAccessPattern

Definition at line 67 of file SparseUtil.h.

const int Eigen::RandomAccessPattern = 0x8 | OuterRandomAccessPattern | InnerRandomAccessPattern

Definition at line 68 of file SparseUtil.h.

const unsigned int Eigen::SelfAdjointBit = SelfAdjoint

Definition at line 16 of file Eigen2Support/TriangularSolver.h.

const unsigned int Eigen::SkylineBit = 0x1200

Definition at line 21 of file SkylineUtil.h.

const unsigned int Eigen::UnitDiagBit = UnitDiag

Definition at line 15 of file Eigen2Support/TriangularSolver.h.

const unsigned int Eigen::UnitLowerTriangular = UnitLower

Definition at line 23 of file Eigen2Support/TriangularSolver.h.

const unsigned int Eigen::UnitUpperTriangular = UnitUpper

Definition at line 22 of file Eigen2Support/TriangularSolver.h.

const unsigned int Eigen::UpperTriangular = Upper

Definition at line 20 of file Eigen2Support/TriangularSolver.h.

const unsigned int Eigen::UpperTriangularBit = Upper

Definition at line 17 of file Eigen2Support/TriangularSolver.h.



shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:39:03