KroneckerTensorProduct.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2011 Kolja Brix <brix@igpm.rwth-aachen.de>
00005 // Copyright (C) 2011 Andreas Platen <andiplaten@gmx.de>
00006 // Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
00007 //
00008 // This Source Code Form is subject to the terms of the Mozilla
00009 // Public License v. 2.0. If a copy of the MPL was not distributed
00010 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00011 
00012 #ifndef KRONECKER_TENSOR_PRODUCT_H
00013 #define KRONECKER_TENSOR_PRODUCT_H
00014 
00015 namespace Eigen { 
00016 
00017 template<typename Scalar, int Options, typename Index> class SparseMatrix;
00018 
00029 template<typename Lhs, typename Rhs>
00030 class KroneckerProduct : public ReturnByValue<KroneckerProduct<Lhs,Rhs> >
00031 {
00032   private:
00033     typedef ReturnByValue<KroneckerProduct> Base;
00034     typedef typename Base::Scalar Scalar;
00035     typedef typename Base::Index Index;
00036 
00037   public:
00039     KroneckerProduct(const Lhs& A, const Rhs& B)
00040       : m_A(A), m_B(B)
00041     {}
00042 
00044     template<typename Dest> void evalTo(Dest& dst) const;
00045     
00046     inline Index rows() const { return m_A.rows() * m_B.rows(); }
00047     inline Index cols() const { return m_A.cols() * m_B.cols(); }
00048 
00049     Scalar coeff(Index row, Index col) const
00050     {
00051       return m_A.coeff(row / m_B.rows(), col / m_B.cols()) *
00052              m_B.coeff(row % m_B.rows(), col % m_B.cols());
00053     }
00054 
00055     Scalar coeff(Index i) const
00056     {
00057       EIGEN_STATIC_ASSERT_VECTOR_ONLY(KroneckerProduct);
00058       return m_A.coeff(i / m_A.size()) * m_B.coeff(i % m_A.size());
00059     }
00060 
00061   private:
00062     typename Lhs::Nested m_A;
00063     typename Rhs::Nested m_B;
00064 };
00065 
00079 template<typename Lhs, typename Rhs>
00080 class KroneckerProductSparse : public EigenBase<KroneckerProductSparse<Lhs,Rhs> >
00081 {
00082   private:
00083     typedef typename internal::traits<KroneckerProductSparse>::Index Index;
00084 
00085   public:
00087     KroneckerProductSparse(const Lhs& A, const Rhs& B)
00088       : m_A(A), m_B(B)
00089     {}
00090 
00092     template<typename Dest> void evalTo(Dest& dst) const;
00093     
00094     inline Index rows() const { return m_A.rows() * m_B.rows(); }
00095     inline Index cols() const { return m_A.cols() * m_B.cols(); }
00096 
00097     template<typename Scalar, int Options, typename Index>
00098     operator SparseMatrix<Scalar, Options, Index>()
00099     {
00100       SparseMatrix<Scalar, Options, Index> result;
00101       evalTo(result.derived());
00102       return result;
00103     }
00104 
00105   private:
00106     typename Lhs::Nested m_A;
00107     typename Rhs::Nested m_B;
00108 };
00109 
00110 template<typename Lhs, typename Rhs>
00111 template<typename Dest>
00112 void KroneckerProduct<Lhs,Rhs>::evalTo(Dest& dst) const
00113 {
00114   const int BlockRows = Rhs::RowsAtCompileTime,
00115             BlockCols = Rhs::ColsAtCompileTime;
00116   const Index Br = m_B.rows(),
00117               Bc = m_B.cols();
00118   for (Index i=0; i < m_A.rows(); ++i)
00119     for (Index j=0; j < m_A.cols(); ++j)
00120       Block<Dest,BlockRows,BlockCols>(dst,i*Br,j*Bc,Br,Bc) = m_A.coeff(i,j) * m_B;
00121 }
00122 
00123 template<typename Lhs, typename Rhs>
00124 template<typename Dest>
00125 void KroneckerProductSparse<Lhs,Rhs>::evalTo(Dest& dst) const
00126 {
00127   const Index Br = m_B.rows(),
00128               Bc = m_B.cols();
00129   dst.resize(rows(),cols());
00130   dst.resizeNonZeros(0);
00131   dst.reserve(m_A.nonZeros() * m_B.nonZeros());
00132 
00133   for (Index kA=0; kA < m_A.outerSize(); ++kA)
00134   {
00135     for (Index kB=0; kB < m_B.outerSize(); ++kB)
00136     {
00137       for (typename Lhs::InnerIterator itA(m_A,kA); itA; ++itA)
00138       {
00139         for (typename Rhs::InnerIterator itB(m_B,kB); itB; ++itB)
00140         {
00141           const Index i = itA.row() * Br + itB.row(),
00142                       j = itA.col() * Bc + itB.col();
00143           dst.insert(i,j) = itA.value() * itB.value();
00144         }
00145       }
00146     }
00147   }
00148 }
00149 
00150 namespace internal {
00151 
00152 template<typename _Lhs, typename _Rhs>
00153 struct traits<KroneckerProduct<_Lhs,_Rhs> >
00154 {
00155   typedef typename remove_all<_Lhs>::type Lhs;
00156   typedef typename remove_all<_Rhs>::type Rhs;
00157   typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
00158 
00159   enum {
00160     Rows = size_at_compile_time<traits<Lhs>::RowsAtCompileTime, traits<Rhs>::RowsAtCompileTime>::ret,
00161     Cols = size_at_compile_time<traits<Lhs>::ColsAtCompileTime, traits<Rhs>::ColsAtCompileTime>::ret,
00162     MaxRows = size_at_compile_time<traits<Lhs>::MaxRowsAtCompileTime, traits<Rhs>::MaxRowsAtCompileTime>::ret,
00163     MaxCols = size_at_compile_time<traits<Lhs>::MaxColsAtCompileTime, traits<Rhs>::MaxColsAtCompileTime>::ret,
00164     CoeffReadCost = Lhs::CoeffReadCost + Rhs::CoeffReadCost + NumTraits<Scalar>::MulCost
00165   };
00166 
00167   typedef Matrix<Scalar,Rows,Cols> ReturnType;
00168 };
00169 
00170 template<typename _Lhs, typename _Rhs>
00171 struct traits<KroneckerProductSparse<_Lhs,_Rhs> >
00172 {
00173   typedef MatrixXpr XprKind;
00174   typedef typename remove_all<_Lhs>::type Lhs;
00175   typedef typename remove_all<_Rhs>::type Rhs;
00176   typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
00177   typedef typename promote_storage_type<typename traits<Lhs>::StorageKind, typename traits<Rhs>::StorageKind>::ret StorageKind;
00178   typedef typename promote_index_type<typename Lhs::Index, typename Rhs::Index>::type Index;
00179 
00180   enum {
00181     LhsFlags = Lhs::Flags,
00182     RhsFlags = Rhs::Flags,
00183 
00184     RowsAtCompileTime = size_at_compile_time<traits<Lhs>::RowsAtCompileTime, traits<Rhs>::RowsAtCompileTime>::ret,
00185     ColsAtCompileTime = size_at_compile_time<traits<Lhs>::ColsAtCompileTime, traits<Rhs>::ColsAtCompileTime>::ret,
00186     MaxRowsAtCompileTime = size_at_compile_time<traits<Lhs>::MaxRowsAtCompileTime, traits<Rhs>::MaxRowsAtCompileTime>::ret,
00187     MaxColsAtCompileTime = size_at_compile_time<traits<Lhs>::MaxColsAtCompileTime, traits<Rhs>::MaxColsAtCompileTime>::ret,
00188 
00189     EvalToRowMajor = (LhsFlags & RhsFlags & RowMajorBit),
00190     RemovedBits = ~(EvalToRowMajor ? 0 : RowMajorBit),
00191 
00192     Flags = ((LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
00193           | EvalBeforeNestingBit | EvalBeforeAssigningBit,
00194     CoeffReadCost = Dynamic
00195   };
00196 };
00197 
00198 } // end namespace internal
00199 
00219 template<typename A, typename B>
00220 KroneckerProduct<A,B> kroneckerProduct(const MatrixBase<A>& a, const MatrixBase<B>& b)
00221 {
00222   return KroneckerProduct<A, B>(a.derived(), b.derived());
00223 }
00224 
00236 template<typename A, typename B>
00237 KroneckerProductSparse<A,B> kroneckerProduct(const EigenBase<A>& a, const EigenBase<B>& b)
00238 {
00239   return KroneckerProductSparse<A,B>(a.derived(), b.derived());
00240 }
00241 
00242 } // end namespace Eigen
00243 
00244 #endif // KRONECKER_TENSOR_PRODUCT_H


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:32:39