PolynomialUtils.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 #ifndef EIGEN_POLYNOMIAL_UTILS_H
00011 #define EIGEN_POLYNOMIAL_UTILS_H
00012 
00013 namespace Eigen { 
00014 
00026 template <typename Polynomials, typename T>
00027 inline
00028 T poly_eval_horner( const Polynomials& poly, const T& x )
00029 {
00030   T val=poly[poly.size()-1];
00031   for(DenseIndex i=poly.size()-2; i>=0; --i ){
00032     val = val*x + poly[i]; }
00033   return val;
00034 }
00035 
00044 template <typename Polynomials, typename T>
00045 inline
00046 T poly_eval( const Polynomials& poly, const T& x )
00047 {
00048   typedef typename NumTraits<T>::Real Real;
00049 
00050   if( numext::abs2( x ) <= Real(1) ){
00051     return poly_eval_horner( poly, x ); }
00052   else
00053   {
00054     T val=poly[0];
00055     T inv_x = T(1)/x;
00056     for( DenseIndex i=1; i<poly.size(); ++i ){
00057       val = val*inv_x + poly[i]; }
00058 
00059     return std::pow(x,(T)(poly.size()-1)) * val;
00060   }
00061 }
00062 
00073 template <typename Polynomial>
00074 inline
00075 typename NumTraits<typename Polynomial::Scalar>::Real cauchy_max_bound( const Polynomial& poly )
00076 {
00077   using std::abs;
00078   typedef typename Polynomial::Scalar Scalar;
00079   typedef typename NumTraits<Scalar>::Real Real;
00080 
00081   eigen_assert( Scalar(0) != poly[poly.size()-1] );
00082   const Scalar inv_leading_coeff = Scalar(1)/poly[poly.size()-1];
00083   Real cb(0);
00084 
00085   for( DenseIndex i=0; i<poly.size()-1; ++i ){
00086     cb += abs(poly[i]*inv_leading_coeff); }
00087   return cb + Real(1);
00088 }
00089 
00096 template <typename Polynomial>
00097 inline
00098 typename NumTraits<typename Polynomial::Scalar>::Real cauchy_min_bound( const Polynomial& poly )
00099 {
00100   using std::abs;
00101   typedef typename Polynomial::Scalar Scalar;
00102   typedef typename NumTraits<Scalar>::Real Real;
00103 
00104   DenseIndex i=0;
00105   while( i<poly.size()-1 && Scalar(0) == poly(i) ){ ++i; }
00106   if( poly.size()-1 == i ){
00107     return Real(1); }
00108 
00109   const Scalar inv_min_coeff = Scalar(1)/poly[i];
00110   Real cb(1);
00111   for( DenseIndex j=i+1; j<poly.size(); ++j ){
00112     cb += abs(poly[j]*inv_min_coeff); }
00113   return Real(1)/cb;
00114 }
00115 
00126 template <typename RootVector, typename Polynomial>
00127 void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly )
00128 {
00129 
00130   typedef typename Polynomial::Scalar Scalar;
00131 
00132   poly.setZero( rv.size()+1 );
00133   poly[0] = -rv[0]; poly[1] = Scalar(1);
00134   for( DenseIndex i=1; i< rv.size(); ++i )
00135   {
00136     for( DenseIndex j=i+1; j>0; --j ){ poly[j] = poly[j-1] - rv[i]*poly[j]; }
00137     poly[0] = -rv[i]*poly[0];
00138   }
00139 }
00140 
00141 } // end namespace Eigen
00142 
00143 #endif // EIGEN_POLYNOMIAL_UTILS_H


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:34:28