IO.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
00005 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
00006 //
00007 // This Source Code Form is subject to the terms of the Mozilla
00008 // Public License v. 2.0. If a copy of the MPL was not distributed
00009 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00010 
00011 #ifndef EIGEN_IO_H
00012 #define EIGEN_IO_H
00013 
00014 namespace Eigen { 
00015 
00016 enum { DontAlignCols = 1 };
00017 enum { StreamPrecision = -1,
00018        FullPrecision = -2 };
00019 
00020 namespace internal {
00021 template<typename Derived>
00022 std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt);
00023 }
00024 
00050 struct IOFormat
00051 {
00053   IOFormat(int _precision = StreamPrecision, int _flags = 0,
00054     const std::string& _coeffSeparator = " ",
00055     const std::string& _rowSeparator = "\n", const std::string& _rowPrefix="", const std::string& _rowSuffix="",
00056     const std::string& _matPrefix="", const std::string& _matSuffix="")
00057   : matPrefix(_matPrefix), matSuffix(_matSuffix), rowPrefix(_rowPrefix), rowSuffix(_rowSuffix), rowSeparator(_rowSeparator),
00058     rowSpacer(""), coeffSeparator(_coeffSeparator), precision(_precision), flags(_flags)
00059   {
00060     int i = int(matSuffix.length())-1;
00061     while (i>=0 && matSuffix[i]!='\n')
00062     {
00063       rowSpacer += ' ';
00064       i--;
00065     }
00066   }
00067   std::string matPrefix, matSuffix;
00068   std::string rowPrefix, rowSuffix, rowSeparator, rowSpacer;
00069   std::string coeffSeparator;
00070   int precision;
00071   int flags;
00072 };
00073 
00089 template<typename ExpressionType>
00090 class WithFormat
00091 {
00092   public:
00093 
00094     WithFormat(const ExpressionType& matrix, const IOFormat& format)
00095       : m_matrix(matrix), m_format(format)
00096     {}
00097 
00098     friend std::ostream & operator << (std::ostream & s, const WithFormat& wf)
00099     {
00100       return internal::print_matrix(s, wf.m_matrix.eval(), wf.m_format);
00101     }
00102 
00103   protected:
00104     const typename ExpressionType::Nested m_matrix;
00105     IOFormat m_format;
00106 };
00107 
00115 template<typename Derived>
00116 inline const WithFormat<Derived>
00117 DenseBase<Derived>::format(const IOFormat& fmt) const
00118 {
00119   return WithFormat<Derived>(derived(), fmt);
00120 }
00121 
00122 namespace internal {
00123 
00124 template<typename Scalar, bool IsInteger>
00125 struct significant_decimals_default_impl
00126 {
00127   typedef typename NumTraits<Scalar>::Real RealScalar;
00128   static inline int run()
00129   {
00130     using std::ceil;
00131     using std::log;
00132     return cast<RealScalar,int>(ceil(-log(NumTraits<RealScalar>::epsilon())/log(RealScalar(10))));
00133   }
00134 };
00135 
00136 template<typename Scalar>
00137 struct significant_decimals_default_impl<Scalar, true>
00138 {
00139   static inline int run()
00140   {
00141     return 0;
00142   }
00143 };
00144 
00145 template<typename Scalar>
00146 struct significant_decimals_impl
00147   : significant_decimals_default_impl<Scalar, NumTraits<Scalar>::IsInteger>
00148 {};
00149 
00152 template<typename Derived>
00153 std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt)
00154 {
00155   if(_m.size() == 0)
00156   {
00157     s << fmt.matPrefix << fmt.matSuffix;
00158     return s;
00159   }
00160   
00161   typename Derived::Nested m = _m;
00162   typedef typename Derived::Scalar Scalar;
00163   typedef typename Derived::Index Index;
00164 
00165   Index width = 0;
00166 
00167   std::streamsize explicit_precision;
00168   if(fmt.precision == StreamPrecision)
00169   {
00170     explicit_precision = 0;
00171   }
00172   else if(fmt.precision == FullPrecision)
00173   {
00174     if (NumTraits<Scalar>::IsInteger)
00175     {
00176       explicit_precision = 0;
00177     }
00178     else
00179     {
00180       explicit_precision = significant_decimals_impl<Scalar>::run();
00181     }
00182   }
00183   else
00184   {
00185     explicit_precision = fmt.precision;
00186   }
00187 
00188   std::streamsize old_precision = 0;
00189   if(explicit_precision) old_precision = s.precision(explicit_precision);
00190 
00191   bool align_cols = !(fmt.flags & DontAlignCols);
00192   if(align_cols)
00193   {
00194     // compute the largest width
00195     for(Index j = 0; j < m.cols(); ++j)
00196       for(Index i = 0; i < m.rows(); ++i)
00197       {
00198         std::stringstream sstr;
00199         sstr.copyfmt(s);
00200         sstr << m.coeff(i,j);
00201         width = std::max<Index>(width, Index(sstr.str().length()));
00202       }
00203   }
00204   s << fmt.matPrefix;
00205   for(Index i = 0; i < m.rows(); ++i)
00206   {
00207     if (i)
00208       s << fmt.rowSpacer;
00209     s << fmt.rowPrefix;
00210     if(width) s.width(width);
00211     s << m.coeff(i, 0);
00212     for(Index j = 1; j < m.cols(); ++j)
00213     {
00214       s << fmt.coeffSeparator;
00215       if (width) s.width(width);
00216       s << m.coeff(i, j);
00217     }
00218     s << fmt.rowSuffix;
00219     if( i < m.rows() - 1)
00220       s << fmt.rowSeparator;
00221   }
00222   s << fmt.matSuffix;
00223   if(explicit_precision) s.precision(old_precision);
00224   return s;
00225 }
00226 
00227 } // end namespace internal
00228 
00240 template<typename Derived>
00241 std::ostream & operator <<
00242 (std::ostream & s,
00243  const DenseBase<Derived> & m)
00244 {
00245   return internal::print_matrix(s, m.eval(), EIGEN_DEFAULT_IO_FORMAT);
00246 }
00247 
00248 } // end namespace Eigen
00249 
00250 #endif // EIGEN_IO_H


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:32:10