Deprecated List
Member ColumnsNumber () const
use cols()
Member Determinant () const
use *this.determinant() (or *this.lu().determinant() for large matrices) Calculate and return the matrix determinant (Laplace)
Member Dump ()
use ostream << *this or even ostream << *this.withFormat(...)
Member Eigen::AlignedBox< _Scalar, _AmbientDim >::isNull () const
use isEmpty()
Member Eigen::AlignedBox< _Scalar, _AmbientDim >::setNull ()
use setEmpty()
Member Eigen::AlignedScaling2d
Member Eigen::AlignedScaling2f
Member Eigen::AlignedScaling3d
Member Eigen::AlignedScaling3f
Member Eigen::Cwise< ExpressionType >::max (const MatrixBase< OtherDerived > &other) const
ArrayBase::max()
Member Eigen::Cwise< ExpressionType >::min (const MatrixBase< OtherDerived > &other) const
ArrayBase::min()
Member Eigen::Cwise< ExpressionType >::operator*= (const MatrixBase< OtherDerived > &other)
ArrayBase::operator*=()
Member Eigen::Cwise< ExpressionType >::operator+ (const Scalar &scalar) const
ArrayBase::operator+(Scalar)
Member Eigen::Cwise< ExpressionType >::operator+= (const Scalar &scalar)
ArrayBase::operator+=(Scalar)
Member Eigen::Cwise< ExpressionType >::operator- (const Scalar &scalar) const
ArrayBase::operator-(Scalar)
Member Eigen::Cwise< ExpressionType >::operator-= (const Scalar &scalar)
ArrayBase::operator-=(Scalar)
Member Eigen::Cwise< ExpressionType >::operator/= (const MatrixBase< OtherDerived > &other)
ArrayBase::operator/=()
Class Eigen::DynamicSparseMatrix< _Scalar, _Options, _Index >
use a SparseMatrix in an uncompressed mode
Member Eigen::DynamicSparseMatrix< _Scalar, _Options, _Index >::endFill ()
use finalize() Does nothing. Provided for compatibility with SparseMatrix.
Member Eigen::DynamicSparseMatrix< _Scalar, _Options, _Index >::fill (Index row, Index col)
use insert() inserts a nonzero coefficient at given coordinates row, col and returns its reference assuming that: 1 - the coefficient does not exist yet 2 - this the coefficient with greater inner coordinate for the given outer coordinate. In other words, assuming *this is column-major, then there must not exists any nonzero coefficient of coordinates i x col such that i >= row. Otherwise the matrix is invalid.
Member Eigen::DynamicSparseMatrix< _Scalar, _Options, _Index >::fillrand (Index row, Index col)
use insert() Like fill() but with random inner coordinates. Compared to the generic coeffRef(), the unique limitation is that we assume the coefficient does not exist yet.
Member Eigen::DynamicSparseMatrix< _Scalar, _Options, _Index >::startFill (Index reserveSize=1000)
Set the matrix to zero and reserve the memory for reserveSize nonzero coefficients.
Member Eigen::EIGEN_CWISE_BINOP_RETURN_TYPE (std::less_equal) Cwise< ExpressionType >
ArrayBase::<=()
Member Eigen::EIGEN_CWISE_BINOP_RETURN_TYPE (std::greater) Cwise< ExpressionType >
ArrayBase::operator>()
Member Eigen::EIGEN_CWISE_BINOP_RETURN_TYPE (std::greater_equal) Cwise< ExpressionType >
ArrayBase::operator>=()
Member Eigen::EIGEN_CWISE_BINOP_RETURN_TYPE (std::equal_to) Cwise< ExpressionType >
ArrayBase::operator==()
Member Eigen::EIGEN_CWISE_BINOP_RETURN_TYPE (std::not_equal_to) Cwise< ExpressionType >
ArrayBase::operator!=()
Member Eigen::EIGEN_CWISE_BINOP_RETURN_TYPE (internal::scalar_quotient_op) Cwise< ExpressionType >
ArrayBase::operator/()
Member Eigen::EIGEN_CWISE_BINOP_RETURN_TYPE (std::less) Cwise< ExpressionType >
ArrayBase::operator<()
Member Eigen::EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE (std::less) Cwise< ExpressionType >
ArrayBase::operator<(Scalar)
Member Eigen::EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE (std::greater) Cwise< ExpressionType >
ArrayBase::operator>(Scalar)
Member Eigen::EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE (std::greater_equal) Cwise< ExpressionType >
ArrayBase::operator>=(Scalar)
Member Eigen::EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE (std::equal_to) Cwise< ExpressionType >
ArrayBase::operator==(Scalar)
Member Eigen::EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE (std::not_equal_to) Cwise< ExpressionType >
ArrayBase::operator!=(Scalar)
Member Eigen::EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE (std::less_equal) Cwise< ExpressionType >
ArrayBase::operator<=(Scalar)
Member Eigen::EIGEN_CWISE_PRODUCT_RETURN_TYPE (ExpressionType, OtherDerived) Cwise< ExpressionType >
ArrayBase::operator*()
Member Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_abs_op) Cwise< ExpressionType >
ArrayBase::abs()
Member Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_exp_op) Cwise< ExpressionType >
ArrayBase::exp()
Member Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_log_op) Cwise< ExpressionType >
ArrayBase::log()
Member Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_abs2_op) Cwise< ExpressionType >
ArrayBase::abs2()
Member Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_sqrt_op) Cwise< ExpressionType >
ArrayBase::sqrt()
Member Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_cos_op) Cwise< ExpressionType >
ArrayBase::cos()
Member Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_sin_op) Cwise< ExpressionType >
ArrayBase::sin()
Member Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_pow_op) Cwise< ExpressionType >
ArrayBase::log()
Member Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_inverse_op) Cwise< ExpressionType >
ArrayBase::inverse()
Member Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_square_op) Cwise< ExpressionType >
ArrayBase::square()
Member Eigen::EIGEN_CWISE_UNOP_RETURN_TYPE (internal::scalar_cube_op) Cwise< ExpressionType >
ArrayBase::cube()
Member Eigen::ParametrizedLine< _Scalar, _AmbientDim >::intersection (const Hyperplane< _Scalar, _AmbientDim, OtherOptions > &hyperplane) const
use intersectionParameter()
Class Eigen::SimplicialCholesky< _MatrixType, _UpLo, _Ordering >

use SimplicialLDLT or class SimplicialLLT

Member ElementAt (unsigned int i, unsigned int j) const
use *this(i,j) (or *this.coeff(i,j)) Return the element stored in the i-th rows at the j-th column
Member GetColumn (const unsigned int j)
use *this.col(j)
Member GetRow (const unsigned int i)
use *this.row(i)
Member Import (const MatrixBase< OtherDerived > &b)
use m.cast<NewScalar>()
Member Norm () const
use norm()
Member Normalize ()

use normalize() or normalized()

use normalized()

Member operator+ (const Scalar k)
use *this.cwise() + k
Member operator+= (const Scalar k)
use *this.cwise() += k (Modifier) Add to each element of this matrix the scalar constant k.
Member operator- (const Scalar k)
use *this.cwise() - k
Member operator-= (const Scalar k)
use *this.cwise() -= k (Modifier) Subtract from each element of this matrix the scalar constant k.
Member operator^ (const Derived &p) const
use .cross(p)
Member OuterProduct (const MatrixBase< OtherDerived1 > &a, const MatrixBase< OtherDerived2 > &b)

use *this.dot Matrix multiplication: calculates the cross product.

use *this = a * b.transpose() (or *this = a * b.adjoint() for complexes)

Member RowsNumber () const
use rows()
Member SetColumn (unsigned int j, const MatrixBase< OtherDerived > &other)
use *this.col(i) = other
Member SetColumn (unsigned int j, Scalar *v)
use *this.col(j) = expression
Member SetDiagonal (Scalar *v)
use *this.diagonal() = expression
Member SetIdentity ()
use *this.setIdentity() or *this = MatrixType::Identity(rows,cols), etc.
Member SetRow (unsigned int i, Scalar *v)
use *this.row(i) = expression
Member SetRow (unsigned int j, const MatrixBase< OtherDerived > &other)
use *this.row(i) = other
Member SetZero ()
use *this.setZero() or *this = MatrixType::Zero(rows,cols), etc.
Member SquaredNorm () const
use squaredNorm()
Member SwapColumns (const unsigned int i, const unsigned int j)
use m1.col(i).swap(m1.col(j));
Member SwapRows (const unsigned int i, const unsigned int j)
use m1.col(i).swap(m1.col(j))
Member Trace () const
use trace()
Member Transpose ()

use transposeInPlace() or transpose()

use transpose()

Member V (const int i) const
use m.coeff(i) or m[i] or m(i)
Member V ()

use .data()

use .data()

Member vcg::Transpose (const Eigen::Matrix< Scalar, Size, Size, StorageOrder > &m)
use transposeInPlace() or transpose()


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:38:56