CholmodSupport.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 #ifndef EIGEN_CHOLMODSUPPORT_H
00011 #define EIGEN_CHOLMODSUPPORT_H
00012 
00013 namespace Eigen { 
00014 
00015 namespace internal {
00016 
00017 template<typename Scalar, typename CholmodType>
00018 void cholmod_configure_matrix(CholmodType& mat)
00019 {
00020   if (internal::is_same<Scalar,float>::value)
00021   {
00022     mat.xtype = CHOLMOD_REAL;
00023     mat.dtype = CHOLMOD_SINGLE;
00024   }
00025   else if (internal::is_same<Scalar,double>::value)
00026   {
00027     mat.xtype = CHOLMOD_REAL;
00028     mat.dtype = CHOLMOD_DOUBLE;
00029   }
00030   else if (internal::is_same<Scalar,std::complex<float> >::value)
00031   {
00032     mat.xtype = CHOLMOD_COMPLEX;
00033     mat.dtype = CHOLMOD_SINGLE;
00034   }
00035   else if (internal::is_same<Scalar,std::complex<double> >::value)
00036   {
00037     mat.xtype = CHOLMOD_COMPLEX;
00038     mat.dtype = CHOLMOD_DOUBLE;
00039   }
00040   else
00041   {
00042     eigen_assert(false && "Scalar type not supported by CHOLMOD");
00043   }
00044 }
00045 
00046 } // namespace internal
00047 
00051 template<typename _Scalar, int _Options, typename _Index>
00052 cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat)
00053 {
00054   cholmod_sparse res;
00055   res.nzmax   = mat.nonZeros();
00056   res.nrow    = mat.rows();;
00057   res.ncol    = mat.cols();
00058   res.p       = mat.outerIndexPtr();
00059   res.i       = mat.innerIndexPtr();
00060   res.x       = mat.valuePtr();
00061   res.z       = 0;
00062   res.sorted  = 1;
00063   if(mat.isCompressed())
00064   {
00065     res.packed  = 1;
00066     res.nz = 0;
00067   }
00068   else
00069   {
00070     res.packed  = 0;
00071     res.nz = mat.innerNonZeroPtr();
00072   }
00073 
00074   res.dtype   = 0;
00075   res.stype   = -1;
00076   
00077   if (internal::is_same<_Index,int>::value)
00078   {
00079     res.itype = CHOLMOD_INT;
00080   }
00081   else if (internal::is_same<_Index,UF_long>::value)
00082   {
00083     res.itype = CHOLMOD_LONG;
00084   }
00085   else
00086   {
00087     eigen_assert(false && "Index type not supported yet");
00088   }
00089 
00090   // setup res.xtype
00091   internal::cholmod_configure_matrix<_Scalar>(res);
00092   
00093   res.stype = 0;
00094   
00095   return res;
00096 }
00097 
00098 template<typename _Scalar, int _Options, typename _Index>
00099 const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat)
00100 {
00101   cholmod_sparse res = viewAsCholmod(mat.const_cast_derived());
00102   return res;
00103 }
00104 
00107 template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
00108 cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
00109 {
00110   cholmod_sparse res = viewAsCholmod(mat.matrix().const_cast_derived());
00111   
00112   if(UpLo==Upper) res.stype =  1;
00113   if(UpLo==Lower) res.stype = -1;
00114 
00115   return res;
00116 }
00117 
00120 template<typename Derived>
00121 cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat)
00122 {
00123   EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
00124   typedef typename Derived::Scalar Scalar;
00125 
00126   cholmod_dense res;
00127   res.nrow   = mat.rows();
00128   res.ncol   = mat.cols();
00129   res.nzmax  = res.nrow * res.ncol;
00130   res.d      = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride();
00131   res.x      = (void*)(mat.derived().data());
00132   res.z      = 0;
00133 
00134   internal::cholmod_configure_matrix<Scalar>(res);
00135 
00136   return res;
00137 }
00138 
00141 template<typename Scalar, int Flags, typename Index>
00142 MappedSparseMatrix<Scalar,Flags,Index> viewAsEigen(cholmod_sparse& cm)
00143 {
00144   return MappedSparseMatrix<Scalar,Flags,Index>
00145          (cm.nrow, cm.ncol, static_cast<Index*>(cm.p)[cm.ncol],
00146           static_cast<Index*>(cm.p), static_cast<Index*>(cm.i),static_cast<Scalar*>(cm.x) );
00147 }
00148 
00149 enum CholmodMode {
00150   CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt
00151 };
00152 
00153 
00159 template<typename _MatrixType, int _UpLo, typename Derived>
00160 class CholmodBase : internal::noncopyable
00161 {
00162   public:
00163     typedef _MatrixType MatrixType;
00164     enum { UpLo = _UpLo };
00165     typedef typename MatrixType::Scalar Scalar;
00166     typedef typename MatrixType::RealScalar RealScalar;
00167     typedef MatrixType CholMatrixType;
00168     typedef typename MatrixType::Index Index;
00169 
00170   public:
00171 
00172     CholmodBase()
00173       : m_cholmodFactor(0), m_info(Success), m_isInitialized(false)
00174     {
00175       m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0);
00176       cholmod_start(&m_cholmod);
00177     }
00178 
00179     CholmodBase(const MatrixType& matrix)
00180       : m_cholmodFactor(0), m_info(Success), m_isInitialized(false)
00181     {
00182       m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0);
00183       cholmod_start(&m_cholmod);
00184       compute(matrix);
00185     }
00186 
00187     ~CholmodBase()
00188     {
00189       if(m_cholmodFactor)
00190         cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
00191       cholmod_finish(&m_cholmod);
00192     }
00193     
00194     inline Index cols() const { return m_cholmodFactor->n; }
00195     inline Index rows() const { return m_cholmodFactor->n; }
00196     
00197     Derived& derived() { return *static_cast<Derived*>(this); }
00198     const Derived& derived() const { return *static_cast<const Derived*>(this); }
00199     
00205     ComputationInfo info() const
00206     {
00207       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
00208       return m_info;
00209     }
00210 
00212     Derived& compute(const MatrixType& matrix)
00213     {
00214       analyzePattern(matrix);
00215       factorize(matrix);
00216       return derived();
00217     }
00218     
00223     template<typename Rhs>
00224     inline const internal::solve_retval<CholmodBase, Rhs>
00225     solve(const MatrixBase<Rhs>& b) const
00226     {
00227       eigen_assert(m_isInitialized && "LLT is not initialized.");
00228       eigen_assert(rows()==b.rows()
00229                 && "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b");
00230       return internal::solve_retval<CholmodBase, Rhs>(*this, b.derived());
00231     }
00232     
00237     template<typename Rhs>
00238     inline const internal::sparse_solve_retval<CholmodBase, Rhs>
00239     solve(const SparseMatrixBase<Rhs>& b) const
00240     {
00241       eigen_assert(m_isInitialized && "LLT is not initialized.");
00242       eigen_assert(rows()==b.rows()
00243                 && "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b");
00244       return internal::sparse_solve_retval<CholmodBase, Rhs>(*this, b.derived());
00245     }
00246     
00253     void analyzePattern(const MatrixType& matrix)
00254     {
00255       if(m_cholmodFactor)
00256       {
00257         cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
00258         m_cholmodFactor = 0;
00259       }
00260       cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
00261       m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
00262       
00263       this->m_isInitialized = true;
00264       this->m_info = Success;
00265       m_analysisIsOk = true;
00266       m_factorizationIsOk = false;
00267     }
00268     
00275     void factorize(const MatrixType& matrix)
00276     {
00277       eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
00278       cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
00279       cholmod_factorize_p(&A, m_shiftOffset, 0, 0, m_cholmodFactor, &m_cholmod);
00280       
00281       // If the factorization failed, minor is the column at which it did. On success minor == n.
00282       this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue);
00283       m_factorizationIsOk = true;
00284     }
00285     
00288     cholmod_common& cholmod() { return m_cholmod; }
00289     
00290     #ifndef EIGEN_PARSED_BY_DOXYGEN
00291 
00292     template<typename Rhs,typename Dest>
00293     void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
00294     {
00295       eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
00296       const Index size = m_cholmodFactor->n;
00297       EIGEN_UNUSED_VARIABLE(size);
00298       eigen_assert(size==b.rows());
00299 
00300       // note: cd stands for Cholmod Dense
00301       Rhs& b_ref(b.const_cast_derived());
00302       cholmod_dense b_cd = viewAsCholmod(b_ref);
00303       cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod);
00304       if(!x_cd)
00305       {
00306         this->m_info = NumericalIssue;
00307       }
00308       // TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
00309       dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols());
00310       cholmod_free_dense(&x_cd, &m_cholmod);
00311     }
00312     
00314     template<typename RhsScalar, int RhsOptions, typename RhsIndex, typename DestScalar, int DestOptions, typename DestIndex>
00315     void _solve(const SparseMatrix<RhsScalar,RhsOptions,RhsIndex> &b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
00316     {
00317       eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
00318       const Index size = m_cholmodFactor->n;
00319       EIGEN_UNUSED_VARIABLE(size);
00320       eigen_assert(size==b.rows());
00321 
00322       // note: cs stands for Cholmod Sparse
00323       cholmod_sparse b_cs = viewAsCholmod(b);
00324       cholmod_sparse* x_cs = cholmod_spsolve(CHOLMOD_A, m_cholmodFactor, &b_cs, &m_cholmod);
00325       if(!x_cs)
00326       {
00327         this->m_info = NumericalIssue;
00328       }
00329       // TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
00330       dest = viewAsEigen<DestScalar,DestOptions,DestIndex>(*x_cs);
00331       cholmod_free_sparse(&x_cs, &m_cholmod);
00332     }
00333     #endif // EIGEN_PARSED_BY_DOXYGEN
00334     
00335     
00345     Derived& setShift(const RealScalar& offset)
00346     {
00347       m_shiftOffset[0] = offset;
00348       return derived();
00349     }
00350     
00351     template<typename Stream>
00352     void dumpMemory(Stream& /*s*/)
00353     {}
00354     
00355   protected:
00356     mutable cholmod_common m_cholmod;
00357     cholmod_factor* m_cholmodFactor;
00358     RealScalar m_shiftOffset[2];
00359     mutable ComputationInfo m_info;
00360     bool m_isInitialized;
00361     int m_factorizationIsOk;
00362     int m_analysisIsOk;
00363 };
00364 
00383 template<typename _MatrixType, int _UpLo = Lower>
00384 class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> >
00385 {
00386     typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base;
00387     using Base::m_cholmod;
00388     
00389   public:
00390     
00391     typedef _MatrixType MatrixType;
00392     
00393     CholmodSimplicialLLT() : Base() { init(); }
00394 
00395     CholmodSimplicialLLT(const MatrixType& matrix) : Base()
00396     {
00397       init();
00398       compute(matrix);
00399     }
00400 
00401     ~CholmodSimplicialLLT() {}
00402   protected:
00403     void init()
00404     {
00405       m_cholmod.final_asis = 0;
00406       m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
00407       m_cholmod.final_ll = 1;
00408     }
00409 };
00410 
00411 
00430 template<typename _MatrixType, int _UpLo = Lower>
00431 class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> >
00432 {
00433     typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base;
00434     using Base::m_cholmod;
00435     
00436   public:
00437     
00438     typedef _MatrixType MatrixType;
00439     
00440     CholmodSimplicialLDLT() : Base() { init(); }
00441 
00442     CholmodSimplicialLDLT(const MatrixType& matrix) : Base()
00443     {
00444       init();
00445       compute(matrix);
00446     }
00447 
00448     ~CholmodSimplicialLDLT() {}
00449   protected:
00450     void init()
00451     {
00452       m_cholmod.final_asis = 1;
00453       m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
00454     }
00455 };
00456 
00475 template<typename _MatrixType, int _UpLo = Lower>
00476 class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> >
00477 {
00478     typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base;
00479     using Base::m_cholmod;
00480     
00481   public:
00482     
00483     typedef _MatrixType MatrixType;
00484     
00485     CholmodSupernodalLLT() : Base() { init(); }
00486 
00487     CholmodSupernodalLLT(const MatrixType& matrix) : Base()
00488     {
00489       init();
00490       compute(matrix);
00491     }
00492 
00493     ~CholmodSupernodalLLT() {}
00494   protected:
00495     void init()
00496     {
00497       m_cholmod.final_asis = 1;
00498       m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
00499     }
00500 };
00501 
00522 template<typename _MatrixType, int _UpLo = Lower>
00523 class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> >
00524 {
00525     typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base;
00526     using Base::m_cholmod;
00527     
00528   public:
00529     
00530     typedef _MatrixType MatrixType;
00531     
00532     CholmodDecomposition() : Base() { init(); }
00533 
00534     CholmodDecomposition(const MatrixType& matrix) : Base()
00535     {
00536       init();
00537       compute(matrix);
00538     }
00539 
00540     ~CholmodDecomposition() {}
00541     
00542     void setMode(CholmodMode mode)
00543     {
00544       switch(mode)
00545       {
00546         case CholmodAuto:
00547           m_cholmod.final_asis = 1;
00548           m_cholmod.supernodal = CHOLMOD_AUTO;
00549           break;
00550         case CholmodSimplicialLLt:
00551           m_cholmod.final_asis = 0;
00552           m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
00553           m_cholmod.final_ll = 1;
00554           break;
00555         case CholmodSupernodalLLt:
00556           m_cholmod.final_asis = 1;
00557           m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
00558           break;
00559         case CholmodLDLt:
00560           m_cholmod.final_asis = 1;
00561           m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
00562           break;
00563         default:
00564           break;
00565       }
00566     }
00567   protected:
00568     void init()
00569     {
00570       m_cholmod.final_asis = 1;
00571       m_cholmod.supernodal = CHOLMOD_AUTO;
00572     }
00573 };
00574 
00575 namespace internal {
00576   
00577 template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs>
00578 struct solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
00579   : solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
00580 {
00581   typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec;
00582   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
00583 
00584   template<typename Dest> void evalTo(Dest& dst) const
00585   {
00586     dec()._solve(rhs(),dst);
00587   }
00588 };
00589 
00590 template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs>
00591 struct sparse_solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
00592   : sparse_solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
00593 {
00594   typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec;
00595   EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
00596 
00597   template<typename Dest> void evalTo(Dest& dst) const
00598   {
00599     dec()._solve(rhs(),dst);
00600   }
00601 };
00602 
00603 } // end namespace internal
00604 
00605 } // end namespace Eigen
00606 
00607 #endif // EIGEN_CHOLMODSUPPORT_H


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:29:23