Public Types | Public Member Functions | Protected Attributes
Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD > Class Template Reference

#include <ArpackSelfAdjointEigenSolver.h>

List of all members.

Public Types

typedef MatrixType::Index Index
typedef NumTraits< Scalar >::Real RealScalar
 Real scalar type for MatrixType.
typedef
internal::plain_col_type
< MatrixType, RealScalar >
::type 
RealVectorType
 Type for vector of eigenvalues as returned by eigenvalues().
typedef MatrixType::Scalar Scalar
 Scalar type for matrices of type MatrixType.

Public Member Functions

 ArpackGeneralizedSelfAdjointEigenSolver ()
 Default constructor.
 ArpackGeneralizedSelfAdjointEigenSolver (const MatrixType &A, const MatrixType &B, Index nbrEigenvalues, std::string eigs_sigma="LM", int options=ComputeEigenvectors, RealScalar tol=0.0)
 Constructor; computes generalized eigenvalues of given matrix with respect to another matrix.
 ArpackGeneralizedSelfAdjointEigenSolver (const MatrixType &A, Index nbrEigenvalues, std::string eigs_sigma="LM", int options=ComputeEigenvectors, RealScalar tol=0.0)
 Constructor; computes eigenvalues of given matrix.
ArpackGeneralizedSelfAdjointEigenSolvercompute (const MatrixType &A, const MatrixType &B, Index nbrEigenvalues, std::string eigs_sigma="LM", int options=ComputeEigenvectors, RealScalar tol=0.0)
 Computes generalized eigenvalues / eigenvectors of given matrix using the external ARPACK library.
ArpackGeneralizedSelfAdjointEigenSolvercompute (const MatrixType &A, Index nbrEigenvalues, std::string eigs_sigma="LM", int options=ComputeEigenvectors, RealScalar tol=0.0)
 Computes eigenvalues / eigenvectors of given matrix using the external ARPACK library.
const Matrix< Scalar, Dynamic, 1 > & eigenvalues () const
 Returns the eigenvalues of given matrix.
const Matrix< Scalar, Dynamic,
Dynamic > & 
eigenvectors () const
 Returns the eigenvectors of given matrix.
size_t getNbrConvergedEigenValues () const
size_t getNbrIterations () const
ComputationInfo info () const
 Reports whether previous computation was successful.
Matrix< Scalar, Dynamic, DynamicoperatorInverseSqrt () const
 Computes the inverse square root of the matrix.
Matrix< Scalar, Dynamic, DynamicoperatorSqrt () const
 Computes the positive-definite square root of the matrix.

Protected Attributes

bool m_eigenvectorsOk
Matrix< Scalar, Dynamic, 1 > m_eivalues
Matrix< Scalar, Dynamic, Dynamicm_eivec
ComputationInfo m_info
bool m_isInitialized
size_t m_nbrConverged
size_t m_nbrIterations

Detailed Description

template<typename MatrixType, typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
class Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >

Definition at line 40 of file ArpackSelfAdjointEigenSolver.h.


Member Typedef Documentation

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
typedef MatrixType::Index Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::Index

Definition at line 47 of file ArpackSelfAdjointEigenSolver.h.

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
typedef NumTraits<Scalar>::Real Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::RealScalar

Real scalar type for MatrixType.

This is just Scalar if Scalar is real (e.g., float or Scalar), and the type of the real part of Scalar if Scalar is complex.

Definition at line 55 of file ArpackSelfAdjointEigenSolver.h.

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
typedef internal::plain_col_type<MatrixType, RealScalar>::type Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::RealVectorType

Type for vector of eigenvalues as returned by eigenvalues().

This is a column vector with entries of type RealScalar. The length of the vector is the size of nbrEigenvalues.

Definition at line 62 of file ArpackSelfAdjointEigenSolver.h.

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
typedef MatrixType::Scalar Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::Scalar

Scalar type for matrices of type MatrixType.

Definition at line 46 of file ArpackSelfAdjointEigenSolver.h.


Constructor & Destructor Documentation

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::ArpackGeneralizedSelfAdjointEigenSolver ( ) [inline]

Default constructor.

The default constructor is for cases in which the user intends to perform decompositions via compute().

Definition at line 70 of file ArpackSelfAdjointEigenSolver.h.

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::ArpackGeneralizedSelfAdjointEigenSolver ( const MatrixType &  A,
const MatrixType &  B,
Index  nbrEigenvalues,
std::string  eigs_sigma = "LM",
int  options = ComputeEigenvectors,
RealScalar  tol = 0.0 
) [inline]

Constructor; computes generalized eigenvalues of given matrix with respect to another matrix.

Parameters:
[in]ASelf-adjoint matrix whose eigenvalues / eigenvectors will computed. By default, the upper triangular part is used, but can be changed through the template parameter.
[in]BSelf-adjoint matrix for the generalized eigenvalue problem.
[in]nbrEigenvaluesThe number of eigenvalues / eigenvectors to compute. Must be less than the size of the input matrix, or an error is returned.
[in]eigs_sigmaString containing either "LM", "SM", "LA", or "SA", with respective meanings to find the largest magnitude , smallest magnitude, largest algebraic, or smallest algebraic eigenvalues. Alternatively, this value can contain floating point value in string form, in which case the eigenvalues closest to this value will be found.
[in]optionsCan be ComputeEigenvectors (default) or EigenvaluesOnly.
[in]tolWhat tolerance to find the eigenvalues to. Default is 0, which means machine precision.

This constructor calls compute(const MatrixType&, const MatrixType&, Index, string, int, RealScalar) to compute the eigenvalues of the matrix A with respect to B. The eigenvectors are computed if options equals ComputeEigenvectors.

Definition at line 101 of file ArpackSelfAdjointEigenSolver.h.

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::ArpackGeneralizedSelfAdjointEigenSolver ( const MatrixType &  A,
Index  nbrEigenvalues,
std::string  eigs_sigma = "LM",
int  options = ComputeEigenvectors,
RealScalar  tol = 0.0 
) [inline]

Constructor; computes eigenvalues of given matrix.

Parameters:
[in]ASelf-adjoint matrix whose eigenvalues / eigenvectors will computed. By default, the upper triangular part is used, but can be changed through the template parameter.
[in]nbrEigenvaluesThe number of eigenvalues / eigenvectors to compute. Must be less than the size of the input matrix, or an error is returned.
[in]eigs_sigmaString containing either "LM", "SM", "LA", or "SA", with respective meanings to find the largest magnitude , smallest magnitude, largest algebraic, or smallest algebraic eigenvalues. Alternatively, this value can contain floating point value in string form, in which case the eigenvalues closest to this value will be found.
[in]optionsCan be ComputeEigenvectors (default) or EigenvaluesOnly.
[in]tolWhat tolerance to find the eigenvalues to. Default is 0, which means machine precision.

This constructor calls compute(const MatrixType&, Index, string, int, RealScalar) to compute the eigenvalues of the matrix A. The eigenvectors are computed if options equals ComputeEigenvectors.

Definition at line 136 of file ArpackSelfAdjointEigenSolver.h.


Member Function Documentation

template<typename MatrixType , typename MatrixSolver , bool BisSPD>
ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD > & Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::compute ( const MatrixType &  A,
const MatrixType &  B,
Index  nbrEigenvalues,
std::string  eigs_sigma = "LM",
int  options = ComputeEigenvectors,
RealScalar  tol = 0.0 
)

Computes generalized eigenvalues / eigenvectors of given matrix using the external ARPACK library.

Parameters:
[in]ASelfadjoint matrix whose eigendecomposition is to be computed.
[in]BSelfadjoint matrix for generalized eigenvalues.
[in]nbrEigenvaluesThe number of eigenvalues / eigenvectors to compute. Must be less than the size of the input matrix, or an error is returned.
[in]eigs_sigmaString containing either "LM", "SM", "LA", or "SA", with respective meanings to find the largest magnitude , smallest magnitude, largest algebraic, or smallest algebraic eigenvalues. Alternatively, this value can contain floating point value in string form, in which case the eigenvalues closest to this value will be found.
[in]optionsCan be ComputeEigenvectors (default) or EigenvaluesOnly.
[in]tolWhat tolerance to find the eigenvalues to. Default is 0, which means machine precision.
Returns:
Reference to *this

This function computes the generalized eigenvalues of A with respect to B using ARPACK. The eigenvalues() function can be used to retrieve them. If options equals ComputeEigenvectors, then the eigenvectors are also computed and can be retrieved by calling eigenvectors().

Definition at line 348 of file ArpackSelfAdjointEigenSolver.h.

template<typename MatrixType , typename MatrixSolver , bool BisSPD>
ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD > & Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::compute ( const MatrixType &  A,
Index  nbrEigenvalues,
std::string  eigs_sigma = "LM",
int  options = ComputeEigenvectors,
RealScalar  tol = 0.0 
)

Computes eigenvalues / eigenvectors of given matrix using the external ARPACK library.

Parameters:
[in]ASelfadjoint matrix whose eigendecomposition is to be computed.
[in]nbrEigenvaluesThe number of eigenvalues / eigenvectors to compute. Must be less than the size of the input matrix, or an error is returned.
[in]eigs_sigmaString containing either "LM", "SM", "LA", or "SA", with respective meanings to find the largest magnitude , smallest magnitude, largest algebraic, or smallest algebraic eigenvalues. Alternatively, this value can contain floating point value in string form, in which case the eigenvalues closest to this value will be found.
[in]optionsCan be ComputeEigenvectors (default) or EigenvaluesOnly.
[in]tolWhat tolerance to find the eigenvalues to. Default is 0, which means machine precision.
Returns:
Reference to *this

This function computes the eigenvalues of A using ARPACK. The eigenvalues() function can be used to retrieve them. If options equals ComputeEigenvectors, then the eigenvectors are also computed and can be retrieved by calling eigenvectors().

Definition at line 335 of file ArpackSelfAdjointEigenSolver.h.

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
const Matrix<Scalar, Dynamic, 1>& Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::eigenvalues ( ) const [inline]

Returns the eigenvalues of given matrix.

Returns:
A const reference to the column vector containing the eigenvalues.
Precondition:
The eigenvalues have been computed before.

The eigenvalues are repeated according to their algebraic multiplicity, so there are as many eigenvalues as rows in the matrix. The eigenvalues are sorted in increasing order.

Example:

Output:

See also:
eigenvectors(), MatrixBase::eigenvalues()

Definition at line 245 of file ArpackSelfAdjointEigenSolver.h.

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
const Matrix<Scalar, Dynamic, Dynamic>& Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::eigenvectors ( ) const [inline]

Returns the eigenvectors of given matrix.

Returns:
A const reference to the matrix whose columns are the eigenvectors.
Precondition:
The eigenvectors have been computed before.

Column $ k $ of the returned matrix is an eigenvector corresponding to eigenvalue number $ k $ as returned by eigenvalues(). The eigenvectors are normalized to have (Euclidean) norm equal to one. If this object was used to solve the eigenproblem for the selfadjoint matrix $ A $, then the matrix returned by this function is the matrix $ V $ in the eigendecomposition $ A V = D V $. For the generalized eigenproblem, the matrix returned is the solution $ A V = D B V $

Example:

Output:

See also:
eigenvalues()

Definition at line 223 of file ArpackSelfAdjointEigenSolver.h.

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
size_t Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::getNbrConvergedEigenValues ( ) const [inline]

Definition at line 311 of file ArpackSelfAdjointEigenSolver.h.

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
size_t Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::getNbrIterations ( ) const [inline]

Definition at line 314 of file ArpackSelfAdjointEigenSolver.h.

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
ComputationInfo Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::info ( ) const [inline]

Reports whether previous computation was successful.

Returns:
Success if computation was succesful, NoConvergence otherwise.

Definition at line 305 of file ArpackSelfAdjointEigenSolver.h.

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
Matrix<Scalar, Dynamic, Dynamic> Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::operatorInverseSqrt ( ) const [inline]

Computes the inverse square root of the matrix.

Returns:
the inverse positive-definite square root of the matrix
Precondition:
The eigenvalues and eigenvectors of a positive-definite matrix have been computed before.

This function uses the eigendecomposition $ A = V D V^{-1} $ to compute the inverse square root as $ V D^{-1/2} V^{-1} $. This is cheaper than first computing the square root with operatorSqrt() and then its inverse with MatrixBase::inverse().

Example:

Output:

See also:
operatorSqrt(), MatrixBase::inverse(), MatrixFunctions Module

Definition at line 294 of file ArpackSelfAdjointEigenSolver.h.

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
Matrix<Scalar, Dynamic, Dynamic> Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::operatorSqrt ( ) const [inline]

Computes the positive-definite square root of the matrix.

Returns:
the positive-definite square root of the matrix
Precondition:
The eigenvalues and eigenvectors of a positive-definite matrix have been computed before.

The square root of a positive-definite matrix $ A $ is the positive-definite matrix whose square equals $ A $. This function uses the eigendecomposition $ A = V D V^{-1} $ to compute the square root as $ A^{1/2} = V D^{1/2} V^{-1} $.

Example:

Output:

See also:
operatorInverseSqrt(), MatrixFunctions Module

Definition at line 269 of file ArpackSelfAdjointEigenSolver.h.


Member Data Documentation

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
bool Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::m_eigenvectorsOk [protected]

Definition at line 322 of file ArpackSelfAdjointEigenSolver.h.

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
Matrix<Scalar, Dynamic, 1> Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::m_eivalues [protected]

Definition at line 319 of file ArpackSelfAdjointEigenSolver.h.

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
Matrix<Scalar, Dynamic, Dynamic> Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::m_eivec [protected]

Definition at line 318 of file ArpackSelfAdjointEigenSolver.h.

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
ComputationInfo Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::m_info [protected]

Definition at line 320 of file ArpackSelfAdjointEigenSolver.h.

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
bool Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::m_isInitialized [protected]

Definition at line 321 of file ArpackSelfAdjointEigenSolver.h.

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
size_t Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::m_nbrConverged [protected]

Definition at line 324 of file ArpackSelfAdjointEigenSolver.h.

template<typename MatrixType , typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false>
size_t Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::m_nbrIterations [protected]

Definition at line 325 of file ArpackSelfAdjointEigenSolver.h.


The documentation for this class was generated from the following file:


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:39:05