UmfPackSupport.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 #ifndef EIGEN_UMFPACKSUPPORT_H
00011 #define EIGEN_UMFPACKSUPPORT_H
00012 
00013 namespace Eigen { 
00014 
00015 /* TODO extract L, extract U, compute det, etc... */
00016 
00017 // generic double/complex<double> wrapper functions:
00018 
00019 inline void umfpack_free_numeric(void **Numeric, double)
00020 { umfpack_di_free_numeric(Numeric); *Numeric = 0; }
00021 
00022 inline void umfpack_free_numeric(void **Numeric, std::complex<double>)
00023 { umfpack_zi_free_numeric(Numeric); *Numeric = 0; }
00024 
00025 inline void umfpack_free_symbolic(void **Symbolic, double)
00026 { umfpack_di_free_symbolic(Symbolic); *Symbolic = 0; }
00027 
00028 inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>)
00029 { umfpack_zi_free_symbolic(Symbolic); *Symbolic = 0; }
00030 
00031 inline int umfpack_symbolic(int n_row,int n_col,
00032                             const int Ap[], const int Ai[], const double Ax[], void **Symbolic,
00033                             const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
00034 {
00035   return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info);
00036 }
00037 
00038 inline int umfpack_symbolic(int n_row,int n_col,
00039                             const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic,
00040                             const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
00041 {
00042   return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info);
00043 }
00044 
00045 inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[],
00046                             void *Symbolic, void **Numeric,
00047                             const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
00048 {
00049   return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info);
00050 }
00051 
00052 inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[],
00053                             void *Symbolic, void **Numeric,
00054                             const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
00055 {
00056   return umfpack_zi_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info);
00057 }
00058 
00059 inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[],
00060                           double X[], const double B[], void *Numeric,
00061                           const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
00062 {
00063   return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info);
00064 }
00065 
00066 inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[],
00067                           std::complex<double> X[], const std::complex<double> B[], void *Numeric,
00068                           const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
00069 {
00070   return umfpack_zi_solve(sys,Ap,Ai,&numext::real_ref(Ax[0]),0,&numext::real_ref(X[0]),0,&numext::real_ref(B[0]),0,Numeric,Control,Info);
00071 }
00072 
00073 inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
00074 {
00075   return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
00076 }
00077 
00078 inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>)
00079 {
00080   return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
00081 }
00082 
00083 inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[],
00084                                int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
00085 {
00086   return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric);
00087 }
00088 
00089 inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[],
00090                                int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric)
00091 {
00092   double& lx0_real = numext::real_ref(Lx[0]);
00093   double& ux0_real = numext::real_ref(Ux[0]);
00094   double& dx0_real = numext::real_ref(Dx[0]);
00095   return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q,
00096                                 Dx?&dx0_real:0,0,do_recip,Rs,Numeric);
00097 }
00098 
00099 inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
00100 {
00101   return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info);
00102 }
00103 
00104 inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
00105 {
00106   double& mx_real = numext::real_ref(*Mx);
00107   return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info);
00108 }
00109 
00110 namespace internal {
00111   template<typename T> struct umfpack_helper_is_sparse_plain : false_type {};
00112   template<typename Scalar, int Options, typename StorageIndex>
00113   struct umfpack_helper_is_sparse_plain<SparseMatrix<Scalar,Options,StorageIndex> >
00114     : true_type {};
00115   template<typename Scalar, int Options, typename StorageIndex>
00116   struct umfpack_helper_is_sparse_plain<MappedSparseMatrix<Scalar,Options,StorageIndex> >
00117     : true_type {};
00118 }
00119 
00133 template<typename _MatrixType>
00134 class UmfPackLU : internal::noncopyable
00135 {
00136   public:
00137     typedef _MatrixType MatrixType;
00138     typedef typename MatrixType::Scalar Scalar;
00139     typedef typename MatrixType::RealScalar RealScalar;
00140     typedef typename MatrixType::Index Index;
00141     typedef Matrix<Scalar,Dynamic,1> Vector;
00142     typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
00143     typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
00144     typedef SparseMatrix<Scalar> LUMatrixType;
00145     typedef SparseMatrix<Scalar,ColMajor,int> UmfpackMatrixType;
00146 
00147   public:
00148 
00149     UmfPackLU() { init(); }
00150 
00151     UmfPackLU(const MatrixType& matrix)
00152     {
00153       init();
00154       compute(matrix);
00155     }
00156 
00157     ~UmfPackLU()
00158     {
00159       if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
00160       if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar());
00161     }
00162 
00163     inline Index rows() const { return m_copyMatrix.rows(); }
00164     inline Index cols() const { return m_copyMatrix.cols(); }
00165 
00171     ComputationInfo info() const
00172     {
00173       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
00174       return m_info;
00175     }
00176 
00177     inline const LUMatrixType& matrixL() const
00178     {
00179       if (m_extractedDataAreDirty) extractData();
00180       return m_l;
00181     }
00182 
00183     inline const LUMatrixType& matrixU() const
00184     {
00185       if (m_extractedDataAreDirty) extractData();
00186       return m_u;
00187     }
00188 
00189     inline const IntColVectorType& permutationP() const
00190     {
00191       if (m_extractedDataAreDirty) extractData();
00192       return m_p;
00193     }
00194 
00195     inline const IntRowVectorType& permutationQ() const
00196     {
00197       if (m_extractedDataAreDirty) extractData();
00198       return m_q;
00199     }
00200 
00205     template<typename InputMatrixType>
00206     void compute(const InputMatrixType& matrix)
00207     {
00208       if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
00209       if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar());
00210       grapInput(matrix.derived());
00211       analyzePattern_impl();
00212       factorize_impl();
00213     }
00214 
00219     template<typename Rhs>
00220     inline const internal::solve_retval<UmfPackLU, Rhs> solve(const MatrixBase<Rhs>& b) const
00221     {
00222       eigen_assert(m_isInitialized && "UmfPackLU is not initialized.");
00223       eigen_assert(rows()==b.rows()
00224                 && "UmfPackLU::solve(): invalid number of rows of the right hand side matrix b");
00225       return internal::solve_retval<UmfPackLU, Rhs>(*this, b.derived());
00226     }
00227 
00232     template<typename Rhs>
00233     inline const internal::sparse_solve_retval<UmfPackLU, Rhs> solve(const SparseMatrixBase<Rhs>& b) const
00234     {
00235       eigen_assert(m_isInitialized && "UmfPackLU is not initialized.");
00236       eigen_assert(rows()==b.rows()
00237                 && "UmfPackLU::solve(): invalid number of rows of the right hand side matrix b");
00238       return internal::sparse_solve_retval<UmfPackLU, Rhs>(*this, b.derived());
00239     }
00240 
00247     template<typename InputMatrixType>
00248     void analyzePattern(const InputMatrixType& matrix)
00249     {
00250       if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
00251       if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar());
00252       
00253       grapInput(matrix.derived());
00254 
00255       analyzePattern_impl();
00256     }
00257 
00264     template<typename InputMatrixType>
00265     void factorize(const InputMatrixType& matrix)
00266     {
00267       eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
00268       if(m_numeric)
00269         umfpack_free_numeric(&m_numeric,Scalar());
00270 
00271       grapInput(matrix.derived());
00272       
00273       factorize_impl();
00274     }
00275 
00276     #ifndef EIGEN_PARSED_BY_DOXYGEN
00277 
00278     template<typename BDerived,typename XDerived>
00279     bool _solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
00280     #endif
00281 
00282     Scalar determinant() const;
00283 
00284     void extractData() const;
00285 
00286   protected:
00287 
00288     void init()
00289     {
00290       m_info                  = InvalidInput;
00291       m_isInitialized         = false;
00292       m_numeric               = 0;
00293       m_symbolic              = 0;
00294       m_outerIndexPtr         = 0;
00295       m_innerIndexPtr         = 0;
00296       m_valuePtr              = 0;
00297       m_extractedDataAreDirty = true;
00298     }
00299     
00300     template<typename InputMatrixType>
00301     void grapInput_impl(const InputMatrixType& mat, internal::true_type)
00302     {
00303       m_copyMatrix.resize(mat.rows(), mat.cols());
00304       if( ((MatrixType::Flags&RowMajorBit)==RowMajorBit) || sizeof(typename MatrixType::Index)!=sizeof(int) || !mat.isCompressed() )
00305       {
00306         // non supported input -> copy
00307         m_copyMatrix = mat;
00308         m_outerIndexPtr = m_copyMatrix.outerIndexPtr();
00309         m_innerIndexPtr = m_copyMatrix.innerIndexPtr();
00310         m_valuePtr      = m_copyMatrix.valuePtr();
00311       }
00312       else
00313       {
00314         m_outerIndexPtr = mat.outerIndexPtr();
00315         m_innerIndexPtr = mat.innerIndexPtr();
00316         m_valuePtr      = mat.valuePtr();
00317       }
00318     }
00319     
00320     template<typename InputMatrixType>
00321     void grapInput_impl(const InputMatrixType& mat, internal::false_type)
00322     {
00323       m_copyMatrix = mat;
00324       m_outerIndexPtr = m_copyMatrix.outerIndexPtr();
00325       m_innerIndexPtr = m_copyMatrix.innerIndexPtr();
00326       m_valuePtr      = m_copyMatrix.valuePtr();
00327     }
00328     
00329     template<typename InputMatrixType>
00330     void grapInput(const InputMatrixType& mat)
00331     {
00332       grapInput_impl(mat, internal::umfpack_helper_is_sparse_plain<InputMatrixType>());
00333     }
00334     
00335     void analyzePattern_impl()
00336     {
00337       int errorCode = 0;
00338       errorCode = umfpack_symbolic(m_copyMatrix.rows(), m_copyMatrix.cols(), m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
00339                                    &m_symbolic, 0, 0);
00340 
00341       m_isInitialized = true;
00342       m_info = errorCode ? InvalidInput : Success;
00343       m_analysisIsOk = true;
00344       m_factorizationIsOk = false;
00345       m_extractedDataAreDirty = true;
00346     }
00347     
00348     void factorize_impl()
00349     {
00350       int errorCode;
00351       errorCode = umfpack_numeric(m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
00352                                   m_symbolic, &m_numeric, 0, 0);
00353 
00354       m_info = errorCode ? NumericalIssue : Success;
00355       m_factorizationIsOk = true;
00356       m_extractedDataAreDirty = true;
00357     }
00358 
00359     // cached data to reduce reallocation, etc.
00360     mutable LUMatrixType m_l;
00361     mutable LUMatrixType m_u;
00362     mutable IntColVectorType m_p;
00363     mutable IntRowVectorType m_q;
00364 
00365     UmfpackMatrixType m_copyMatrix;
00366     const Scalar* m_valuePtr;
00367     const int* m_outerIndexPtr;
00368     const int* m_innerIndexPtr;
00369     void* m_numeric;
00370     void* m_symbolic;
00371 
00372     mutable ComputationInfo m_info;
00373     bool m_isInitialized;
00374     int m_factorizationIsOk;
00375     int m_analysisIsOk;
00376     mutable bool m_extractedDataAreDirty;
00377     
00378   private:
00379     UmfPackLU(UmfPackLU& ) { }
00380 };
00381 
00382 
00383 template<typename MatrixType>
00384 void UmfPackLU<MatrixType>::extractData() const
00385 {
00386   if (m_extractedDataAreDirty)
00387   {
00388     // get size of the data
00389     int lnz, unz, rows, cols, nz_udiag;
00390     umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
00391 
00392     // allocate data
00393     m_l.resize(rows,(std::min)(rows,cols));
00394     m_l.resizeNonZeros(lnz);
00395 
00396     m_u.resize((std::min)(rows,cols),cols);
00397     m_u.resizeNonZeros(unz);
00398 
00399     m_p.resize(rows);
00400     m_q.resize(cols);
00401 
00402     // extract
00403     umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(),
00404                         m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(),
00405                         m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
00406 
00407     m_extractedDataAreDirty = false;
00408   }
00409 }
00410 
00411 template<typename MatrixType>
00412 typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const
00413 {
00414   Scalar det;
00415   umfpack_get_determinant(&det, 0, m_numeric, 0);
00416   return det;
00417 }
00418 
00419 template<typename MatrixType>
00420 template<typename BDerived,typename XDerived>
00421 bool UmfPackLU<MatrixType>::_solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const
00422 {
00423   const int rhsCols = b.cols();
00424   eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet");
00425   eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet");
00426   eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve");
00427   
00428   int errorCode;
00429   for (int j=0; j<rhsCols; ++j)
00430   {
00431     errorCode = umfpack_solve(UMFPACK_A,
00432         m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
00433         &x.col(j).coeffRef(0), &b.const_cast_derived().col(j).coeffRef(0), m_numeric, 0, 0);
00434     if (errorCode!=0)
00435       return false;
00436   }
00437 
00438   return true;
00439 }
00440 
00441 
00442 namespace internal {
00443 
00444 template<typename _MatrixType, typename Rhs>
00445 struct solve_retval<UmfPackLU<_MatrixType>, Rhs>
00446   : solve_retval_base<UmfPackLU<_MatrixType>, Rhs>
00447 {
00448   typedef UmfPackLU<_MatrixType> Dec;
00449   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
00450 
00451   template<typename Dest> void evalTo(Dest& dst) const
00452   {
00453     dec()._solve(rhs(),dst);
00454   }
00455 };
00456 
00457 template<typename _MatrixType, typename Rhs>
00458 struct sparse_solve_retval<UmfPackLU<_MatrixType>, Rhs>
00459   : sparse_solve_retval_base<UmfPackLU<_MatrixType>, Rhs>
00460 {
00461   typedef UmfPackLU<_MatrixType> Dec;
00462   EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
00463 
00464   template<typename Dest> void evalTo(Dest& dst) const
00465   {
00466     this->defaultEvalTo(dst);
00467   }
00468 };
00469 
00470 } // end namespace internal
00471 
00472 } // end namespace Eigen
00473 
00474 #endif // EIGEN_UMFPACKSUPPORT_H


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:38:31