PermutationMatrix.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
00005 // Copyright (C) 2009-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
00006 //
00007 // This Source Code Form is subject to the terms of the Mozilla
00008 // Public License v. 2.0. If a copy of the MPL was not distributed
00009 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00010 
00011 #ifndef EIGEN_PERMUTATIONMATRIX_H
00012 #define EIGEN_PERMUTATIONMATRIX_H
00013 
00014 namespace Eigen { 
00015 
00016 template<int RowCol,typename IndicesType,typename MatrixType, typename StorageKind> class PermutedImpl;
00017 
00042 namespace internal {
00043 
00044 template<typename PermutationType, typename MatrixType, int Side, bool Transposed=false>
00045 struct permut_matrix_product_retval;
00046 template<typename PermutationType, typename MatrixType, int Side, bool Transposed=false>
00047 struct permut_sparsematrix_product_retval;
00048 enum PermPermProduct_t {PermPermProduct};
00049 
00050 } // end namespace internal
00051 
00052 template<typename Derived>
00053 class PermutationBase : public EigenBase<Derived>
00054 {
00055     typedef internal::traits<Derived> Traits;
00056     typedef EigenBase<Derived> Base;
00057   public:
00058 
00059     #ifndef EIGEN_PARSED_BY_DOXYGEN
00060     typedef typename Traits::IndicesType IndicesType;
00061     enum {
00062       Flags = Traits::Flags,
00063       CoeffReadCost = Traits::CoeffReadCost,
00064       RowsAtCompileTime = Traits::RowsAtCompileTime,
00065       ColsAtCompileTime = Traits::ColsAtCompileTime,
00066       MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
00067       MaxColsAtCompileTime = Traits::MaxColsAtCompileTime
00068     };
00069     typedef typename Traits::Scalar Scalar;
00070     typedef typename Traits::Index Index;
00071     typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime,0,MaxRowsAtCompileTime,MaxColsAtCompileTime>
00072             DenseMatrixType;
00073     typedef PermutationMatrix<IndicesType::SizeAtCompileTime,IndicesType::MaxSizeAtCompileTime,Index>
00074             PlainPermutationType;
00075     using Base::derived;
00076     #endif
00077 
00079     template<typename OtherDerived>
00080     Derived& operator=(const PermutationBase<OtherDerived>& other)
00081     {
00082       indices() = other.indices();
00083       return derived();
00084     }
00085 
00087     template<typename OtherDerived>
00088     Derived& operator=(const TranspositionsBase<OtherDerived>& tr)
00089     {
00090       setIdentity(tr.size());
00091       for(Index k=size()-1; k>=0; --k)
00092         applyTranspositionOnTheRight(k,tr.coeff(k));
00093       return derived();
00094     }
00095 
00096     #ifndef EIGEN_PARSED_BY_DOXYGEN
00097 
00100     Derived& operator=(const PermutationBase& other)
00101     {
00102       indices() = other.indices();
00103       return derived();
00104     }
00105     #endif
00106 
00108     inline Index rows() const { return Index(indices().size()); }
00109 
00111     inline Index cols() const { return Index(indices().size()); }
00112 
00114     inline Index size() const { return Index(indices().size()); }
00115 
00116     #ifndef EIGEN_PARSED_BY_DOXYGEN
00117     template<typename DenseDerived>
00118     void evalTo(MatrixBase<DenseDerived>& other) const
00119     {
00120       other.setZero();
00121       for (int i=0; i<rows();++i)
00122         other.coeffRef(indices().coeff(i),i) = typename DenseDerived::Scalar(1);
00123     }
00124     #endif
00125 
00130     DenseMatrixType toDenseMatrix() const
00131     {
00132       return derived();
00133     }
00134 
00136     const IndicesType& indices() const { return derived().indices(); }
00138     IndicesType& indices() { return derived().indices(); }
00139 
00142     inline void resize(Index newSize)
00143     {
00144       indices().resize(newSize);
00145     }
00146 
00148     void setIdentity()
00149     {
00150       for(Index i = 0; i < size(); ++i)
00151         indices().coeffRef(i) = i;
00152     }
00153 
00156     void setIdentity(Index newSize)
00157     {
00158       resize(newSize);
00159       setIdentity();
00160     }
00161 
00171     Derived& applyTranspositionOnTheLeft(Index i, Index j)
00172     {
00173       eigen_assert(i>=0 && j>=0 && i<size() && j<size());
00174       for(Index k = 0; k < size(); ++k)
00175       {
00176         if(indices().coeff(k) == i) indices().coeffRef(k) = j;
00177         else if(indices().coeff(k) == j) indices().coeffRef(k) = i;
00178       }
00179       return derived();
00180     }
00181 
00190     Derived& applyTranspositionOnTheRight(Index i, Index j)
00191     {
00192       eigen_assert(i>=0 && j>=0 && i<size() && j<size());
00193       std::swap(indices().coeffRef(i), indices().coeffRef(j));
00194       return derived();
00195     }
00196 
00201     inline Transpose<PermutationBase> inverse() const
00202     { return derived(); }
00207     inline Transpose<PermutationBase> transpose() const
00208     { return derived(); }
00209 
00210     /**** multiplication helpers to hopefully get RVO ****/
00211 
00212   
00213 #ifndef EIGEN_PARSED_BY_DOXYGEN
00214   protected:
00215     template<typename OtherDerived>
00216     void assignTranspose(const PermutationBase<OtherDerived>& other)
00217     {
00218       for (int i=0; i<rows();++i) indices().coeffRef(other.indices().coeff(i)) = i;
00219     }
00220     template<typename Lhs,typename Rhs>
00221     void assignProduct(const Lhs& lhs, const Rhs& rhs)
00222     {
00223       eigen_assert(lhs.cols() == rhs.rows());
00224       for (int i=0; i<rows();++i) indices().coeffRef(i) = lhs.indices().coeff(rhs.indices().coeff(i));
00225     }
00226 #endif
00227 
00228   public:
00229 
00234     template<typename Other>
00235     inline PlainPermutationType operator*(const PermutationBase<Other>& other) const
00236     { return PlainPermutationType(internal::PermPermProduct, derived(), other.derived()); }
00237 
00242     template<typename Other>
00243     inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other) const
00244     { return PlainPermutationType(internal::PermPermProduct, *this, other.eval()); }
00245 
00250     template<typename Other> friend
00251     inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other, const PermutationBase& perm)
00252     { return PlainPermutationType(internal::PermPermProduct, other.eval(), perm); }
00253     
00258     Index determinant() const
00259     {
00260       Index res = 1;
00261       Index n = size();
00262       Matrix<bool,RowsAtCompileTime,1,0,MaxRowsAtCompileTime> mask(n);
00263       mask.fill(false);
00264       Index r = 0;
00265       while(r < n)
00266       {
00267         // search for the next seed
00268         while(r<n && mask[r]) r++;
00269         if(r>=n)
00270           break;
00271         // we got one, let's follow it until we are back to the seed
00272         Index k0 = r++;
00273         mask.coeffRef(k0) = true;
00274         for(Index k=indices().coeff(k0); k!=k0; k=indices().coeff(k))
00275         {
00276           mask.coeffRef(k) = true;
00277           res = -res;
00278         }
00279       }
00280       return res;
00281     }
00282 
00283   protected:
00284 
00285 };
00286 
00301 namespace internal {
00302 template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
00303 struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> >
00304  : traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
00305 {
00306   typedef IndexType Index;
00307   typedef Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
00308 };
00309 }
00310 
00311 template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
00312 class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> >
00313 {
00314     typedef PermutationBase<PermutationMatrix> Base;
00315     typedef internal::traits<PermutationMatrix> Traits;
00316   public:
00317 
00318     #ifndef EIGEN_PARSED_BY_DOXYGEN
00319     typedef typename Traits::IndicesType IndicesType;
00320     #endif
00321 
00322     inline PermutationMatrix()
00323     {}
00324 
00327     inline PermutationMatrix(int size) : m_indices(size)
00328     {}
00329 
00331     template<typename OtherDerived>
00332     inline PermutationMatrix(const PermutationBase<OtherDerived>& other)
00333       : m_indices(other.indices()) {}
00334 
00335     #ifndef EIGEN_PARSED_BY_DOXYGEN
00336 
00338     inline PermutationMatrix(const PermutationMatrix& other) : m_indices(other.indices()) {}
00339     #endif
00340 
00348     template<typename Other>
00349     explicit inline PermutationMatrix(const MatrixBase<Other>& a_indices) : m_indices(a_indices)
00350     {}
00351 
00353     template<typename Other>
00354     explicit PermutationMatrix(const TranspositionsBase<Other>& tr)
00355       : m_indices(tr.size())
00356     {
00357       *this = tr;
00358     }
00359 
00361     template<typename Other>
00362     PermutationMatrix& operator=(const PermutationBase<Other>& other)
00363     {
00364       m_indices = other.indices();
00365       return *this;
00366     }
00367 
00369     template<typename Other>
00370     PermutationMatrix& operator=(const TranspositionsBase<Other>& tr)
00371     {
00372       return Base::operator=(tr.derived());
00373     }
00374 
00375     #ifndef EIGEN_PARSED_BY_DOXYGEN
00376 
00379     PermutationMatrix& operator=(const PermutationMatrix& other)
00380     {
00381       m_indices = other.m_indices;
00382       return *this;
00383     }
00384     #endif
00385 
00387     const IndicesType& indices() const { return m_indices; }
00389     IndicesType& indices() { return m_indices; }
00390 
00391 
00392     /**** multiplication helpers to hopefully get RVO ****/
00393 
00394 #ifndef EIGEN_PARSED_BY_DOXYGEN
00395     template<typename Other>
00396     PermutationMatrix(const Transpose<PermutationBase<Other> >& other)
00397       : m_indices(other.nestedPermutation().size())
00398     {
00399       for (int i=0; i<m_indices.size();++i) m_indices.coeffRef(other.nestedPermutation().indices().coeff(i)) = i;
00400     }
00401     template<typename Lhs,typename Rhs>
00402     PermutationMatrix(internal::PermPermProduct_t, const Lhs& lhs, const Rhs& rhs)
00403       : m_indices(lhs.indices().size())
00404     {
00405       Base::assignProduct(lhs,rhs);
00406     }
00407 #endif
00408 
00409   protected:
00410 
00411     IndicesType m_indices;
00412 };
00413 
00414 
00415 namespace internal {
00416 template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
00417 struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> >
00418  : traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
00419 {
00420   typedef IndexType Index;
00421   typedef Map<const Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType;
00422 };
00423 }
00424 
00425 template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
00426 class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess>
00427   : public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> >
00428 {
00429     typedef PermutationBase<Map> Base;
00430     typedef internal::traits<Map> Traits;
00431   public:
00432 
00433     #ifndef EIGEN_PARSED_BY_DOXYGEN
00434     typedef typename Traits::IndicesType IndicesType;
00435     typedef typename IndicesType::Scalar Index;
00436     #endif
00437 
00438     inline Map(const Index* indicesPtr)
00439       : m_indices(indicesPtr)
00440     {}
00441 
00442     inline Map(const Index* indicesPtr, Index size)
00443       : m_indices(indicesPtr,size)
00444     {}
00445 
00447     template<typename Other>
00448     Map& operator=(const PermutationBase<Other>& other)
00449     { return Base::operator=(other.derived()); }
00450 
00452     template<typename Other>
00453     Map& operator=(const TranspositionsBase<Other>& tr)
00454     { return Base::operator=(tr.derived()); }
00455 
00456     #ifndef EIGEN_PARSED_BY_DOXYGEN
00457 
00460     Map& operator=(const Map& other)
00461     {
00462       m_indices = other.m_indices;
00463       return *this;
00464     }
00465     #endif
00466 
00468     const IndicesType& indices() const { return m_indices; }
00470     IndicesType& indices() { return m_indices; }
00471 
00472   protected:
00473 
00474     IndicesType m_indices;
00475 };
00476 
00489 struct PermutationStorage {};
00490 
00491 template<typename _IndicesType> class TranspositionsWrapper;
00492 namespace internal {
00493 template<typename _IndicesType>
00494 struct traits<PermutationWrapper<_IndicesType> >
00495 {
00496   typedef PermutationStorage StorageKind;
00497   typedef typename _IndicesType::Scalar Scalar;
00498   typedef typename _IndicesType::Scalar Index;
00499   typedef _IndicesType IndicesType;
00500   enum {
00501     RowsAtCompileTime = _IndicesType::SizeAtCompileTime,
00502     ColsAtCompileTime = _IndicesType::SizeAtCompileTime,
00503     MaxRowsAtCompileTime = IndicesType::MaxRowsAtCompileTime,
00504     MaxColsAtCompileTime = IndicesType::MaxColsAtCompileTime,
00505     Flags = 0,
00506     CoeffReadCost = _IndicesType::CoeffReadCost
00507   };
00508 };
00509 }
00510 
00511 template<typename _IndicesType>
00512 class PermutationWrapper : public PermutationBase<PermutationWrapper<_IndicesType> >
00513 {
00514     typedef PermutationBase<PermutationWrapper> Base;
00515     typedef internal::traits<PermutationWrapper> Traits;
00516   public:
00517 
00518     #ifndef EIGEN_PARSED_BY_DOXYGEN
00519     typedef typename Traits::IndicesType IndicesType;
00520     #endif
00521 
00522     inline PermutationWrapper(const IndicesType& a_indices)
00523       : m_indices(a_indices)
00524     {}
00525 
00527     const typename internal::remove_all<typename IndicesType::Nested>::type&
00528     indices() const { return m_indices; }
00529 
00530   protected:
00531 
00532     typename IndicesType::Nested m_indices;
00533 };
00534 
00537 template<typename Derived, typename PermutationDerived>
00538 inline const internal::permut_matrix_product_retval<PermutationDerived, Derived, OnTheRight>
00539 operator*(const MatrixBase<Derived>& matrix,
00540           const PermutationBase<PermutationDerived> &permutation)
00541 {
00542   return internal::permut_matrix_product_retval
00543            <PermutationDerived, Derived, OnTheRight>
00544            (permutation.derived(), matrix.derived());
00545 }
00546 
00549 template<typename Derived, typename PermutationDerived>
00550 inline const internal::permut_matrix_product_retval
00551                <PermutationDerived, Derived, OnTheLeft>
00552 operator*(const PermutationBase<PermutationDerived> &permutation,
00553           const MatrixBase<Derived>& matrix)
00554 {
00555   return internal::permut_matrix_product_retval
00556            <PermutationDerived, Derived, OnTheLeft>
00557            (permutation.derived(), matrix.derived());
00558 }
00559 
00560 namespace internal {
00561 
00562 template<typename PermutationType, typename MatrixType, int Side, bool Transposed>
00563 struct traits<permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> >
00564 {
00565   typedef typename MatrixType::PlainObject ReturnType;
00566 };
00567 
00568 template<typename PermutationType, typename MatrixType, int Side, bool Transposed>
00569 struct permut_matrix_product_retval
00570  : public ReturnByValue<permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> >
00571 {
00572     typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
00573     typedef typename MatrixType::Index Index;
00574 
00575     permut_matrix_product_retval(const PermutationType& perm, const MatrixType& matrix)
00576       : m_permutation(perm), m_matrix(matrix)
00577     {}
00578 
00579     inline Index rows() const { return m_matrix.rows(); }
00580     inline Index cols() const { return m_matrix.cols(); }
00581 
00582     template<typename Dest> inline void evalTo(Dest& dst) const
00583     {
00584       const Index n = Side==OnTheLeft ? rows() : cols();
00585       // FIXME we need an is_same for expression that is not sensitive to constness. For instance
00586       // is_same_xpr<Block<const Matrix>, Block<Matrix> >::value should be true.
00587       if(    is_same<MatrixTypeNestedCleaned,Dest>::value
00588           && blas_traits<MatrixTypeNestedCleaned>::HasUsableDirectAccess
00589           && blas_traits<Dest>::HasUsableDirectAccess
00590           && extract_data(dst) == extract_data(m_matrix))
00591       {
00592         // apply the permutation inplace
00593         Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(m_permutation.size());
00594         mask.fill(false);
00595         Index r = 0;
00596         while(r < m_permutation.size())
00597         {
00598           // search for the next seed
00599           while(r<m_permutation.size() && mask[r]) r++;
00600           if(r>=m_permutation.size())
00601             break;
00602           // we got one, let's follow it until we are back to the seed
00603           Index k0 = r++;
00604           Index kPrev = k0;
00605           mask.coeffRef(k0) = true;
00606           for(Index k=m_permutation.indices().coeff(k0); k!=k0; k=m_permutation.indices().coeff(k))
00607           {
00608                   Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k)
00609             .swap(Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
00610                        (dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev));
00611 
00612             mask.coeffRef(k) = true;
00613             kPrev = k;
00614           }
00615         }
00616       }
00617       else
00618       {
00619         for(int i = 0; i < n; ++i)
00620         {
00621           Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
00622                (dst, ((Side==OnTheLeft) ^ Transposed) ? m_permutation.indices().coeff(i) : i)
00623 
00624           =
00625 
00626           Block<const MatrixTypeNestedCleaned,Side==OnTheLeft ? 1 : MatrixType::RowsAtCompileTime,Side==OnTheRight ? 1 : MatrixType::ColsAtCompileTime>
00627                (m_matrix, ((Side==OnTheRight) ^ Transposed) ? m_permutation.indices().coeff(i) : i);
00628         }
00629       }
00630     }
00631 
00632   protected:
00633     const PermutationType& m_permutation;
00634     typename MatrixType::Nested m_matrix;
00635 };
00636 
00637 /* Template partial specialization for transposed/inverse permutations */
00638 
00639 template<typename Derived>
00640 struct traits<Transpose<PermutationBase<Derived> > >
00641  : traits<Derived>
00642 {};
00643 
00644 } // end namespace internal
00645 
00646 template<typename Derived>
00647 class Transpose<PermutationBase<Derived> >
00648   : public EigenBase<Transpose<PermutationBase<Derived> > >
00649 {
00650     typedef Derived PermutationType;
00651     typedef typename PermutationType::IndicesType IndicesType;
00652     typedef typename PermutationType::PlainPermutationType PlainPermutationType;
00653   public:
00654 
00655     #ifndef EIGEN_PARSED_BY_DOXYGEN
00656     typedef internal::traits<PermutationType> Traits;
00657     typedef typename Derived::DenseMatrixType DenseMatrixType;
00658     enum {
00659       Flags = Traits::Flags,
00660       CoeffReadCost = Traits::CoeffReadCost,
00661       RowsAtCompileTime = Traits::RowsAtCompileTime,
00662       ColsAtCompileTime = Traits::ColsAtCompileTime,
00663       MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
00664       MaxColsAtCompileTime = Traits::MaxColsAtCompileTime
00665     };
00666     typedef typename Traits::Scalar Scalar;
00667     #endif
00668 
00669     Transpose(const PermutationType& p) : m_permutation(p) {}
00670 
00671     inline int rows() const { return m_permutation.rows(); }
00672     inline int cols() const { return m_permutation.cols(); }
00673 
00674     #ifndef EIGEN_PARSED_BY_DOXYGEN
00675     template<typename DenseDerived>
00676     void evalTo(MatrixBase<DenseDerived>& other) const
00677     {
00678       other.setZero();
00679       for (int i=0; i<rows();++i)
00680         other.coeffRef(i, m_permutation.indices().coeff(i)) = typename DenseDerived::Scalar(1);
00681     }
00682     #endif
00683 
00685     PlainPermutationType eval() const { return *this; }
00686 
00687     DenseMatrixType toDenseMatrix() const { return *this; }
00688 
00691     template<typename OtherDerived> friend
00692     inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true>
00693     operator*(const MatrixBase<OtherDerived>& matrix, const Transpose& trPerm)
00694     {
00695       return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true>(trPerm.m_permutation, matrix.derived());
00696     }
00697 
00700     template<typename OtherDerived>
00701     inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true>
00702     operator*(const MatrixBase<OtherDerived>& matrix) const
00703     {
00704       return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true>(m_permutation, matrix.derived());
00705     }
00706 
00707     const PermutationType& nestedPermutation() const { return m_permutation; }
00708 
00709   protected:
00710     const PermutationType& m_permutation;
00711 };
00712 
00713 template<typename Derived>
00714 const PermutationWrapper<const Derived> MatrixBase<Derived>::asPermutation() const
00715 {
00716   return derived();
00717 }
00718 
00719 } // end namespace Eigen
00720 
00721 #endif // EIGEN_PERMUTATIONMATRIX_H


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:34:09