SimplicialCholesky.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 #ifndef EIGEN_SIMPLICIAL_CHOLESKY_H
00011 #define EIGEN_SIMPLICIAL_CHOLESKY_H
00012 
00013 namespace Eigen { 
00014 
00015 enum SimplicialCholeskyMode {
00016   SimplicialCholeskyLLT,
00017   SimplicialCholeskyLDLT
00018 };
00019 
00035 template<typename Derived>
00036 class SimplicialCholeskyBase : internal::noncopyable
00037 {
00038   public:
00039     typedef typename internal::traits<Derived>::MatrixType MatrixType;
00040     typedef typename internal::traits<Derived>::OrderingType OrderingType;
00041     enum { UpLo = internal::traits<Derived>::UpLo };
00042     typedef typename MatrixType::Scalar Scalar;
00043     typedef typename MatrixType::RealScalar RealScalar;
00044     typedef typename MatrixType::Index Index;
00045     typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
00046     typedef Matrix<Scalar,Dynamic,1> VectorType;
00047 
00048   public:
00049 
00051     SimplicialCholeskyBase()
00052       : m_info(Success), m_isInitialized(false), m_shiftOffset(0), m_shiftScale(1)
00053     {}
00054 
00055     SimplicialCholeskyBase(const MatrixType& matrix)
00056       : m_info(Success), m_isInitialized(false), m_shiftOffset(0), m_shiftScale(1)
00057     {
00058       derived().compute(matrix);
00059     }
00060 
00061     ~SimplicialCholeskyBase()
00062     {
00063     }
00064 
00065     Derived& derived() { return *static_cast<Derived*>(this); }
00066     const Derived& derived() const { return *static_cast<const Derived*>(this); }
00067     
00068     inline Index cols() const { return m_matrix.cols(); }
00069     inline Index rows() const { return m_matrix.rows(); }
00070     
00076     ComputationInfo info() const
00077     {
00078       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
00079       return m_info;
00080     }
00081     
00086     template<typename Rhs>
00087     inline const internal::solve_retval<SimplicialCholeskyBase, Rhs>
00088     solve(const MatrixBase<Rhs>& b) const
00089     {
00090       eigen_assert(m_isInitialized && "Simplicial LLT or LDLT is not initialized.");
00091       eigen_assert(rows()==b.rows()
00092                 && "SimplicialCholeskyBase::solve(): invalid number of rows of the right hand side matrix b");
00093       return internal::solve_retval<SimplicialCholeskyBase, Rhs>(*this, b.derived());
00094     }
00095     
00100     template<typename Rhs>
00101     inline const internal::sparse_solve_retval<SimplicialCholeskyBase, Rhs>
00102     solve(const SparseMatrixBase<Rhs>& b) const
00103     {
00104       eigen_assert(m_isInitialized && "Simplicial LLT or LDLT is not initialized.");
00105       eigen_assert(rows()==b.rows()
00106                 && "SimplicialCholesky::solve(): invalid number of rows of the right hand side matrix b");
00107       return internal::sparse_solve_retval<SimplicialCholeskyBase, Rhs>(*this, b.derived());
00108     }
00109     
00112     const PermutationMatrix<Dynamic,Dynamic,Index>& permutationP() const
00113     { return m_P; }
00114     
00117     const PermutationMatrix<Dynamic,Dynamic,Index>& permutationPinv() const
00118     { return m_Pinv; }
00119 
00129     Derived& setShift(const RealScalar& offset, const RealScalar& scale = 1)
00130     {
00131       m_shiftOffset = offset;
00132       m_shiftScale = scale;
00133       return derived();
00134     }
00135 
00136 #ifndef EIGEN_PARSED_BY_DOXYGEN
00137 
00138     template<typename Stream>
00139     void dumpMemory(Stream& s)
00140     {
00141       int total = 0;
00142       s << "  L:        " << ((total+=(m_matrix.cols()+1) * sizeof(int) + m_matrix.nonZeros()*(sizeof(int)+sizeof(Scalar))) >> 20) << "Mb" << "\n";
00143       s << "  diag:     " << ((total+=m_diag.size() * sizeof(Scalar)) >> 20) << "Mb" << "\n";
00144       s << "  tree:     " << ((total+=m_parent.size() * sizeof(int)) >> 20) << "Mb" << "\n";
00145       s << "  nonzeros: " << ((total+=m_nonZerosPerCol.size() * sizeof(int)) >> 20) << "Mb" << "\n";
00146       s << "  perm:     " << ((total+=m_P.size() * sizeof(int)) >> 20) << "Mb" << "\n";
00147       s << "  perm^-1:  " << ((total+=m_Pinv.size() * sizeof(int)) >> 20) << "Mb" << "\n";
00148       s << "  TOTAL:    " << (total>> 20) << "Mb" << "\n";
00149     }
00150 
00152     template<typename Rhs,typename Dest>
00153     void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
00154     {
00155       eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
00156       eigen_assert(m_matrix.rows()==b.rows());
00157 
00158       if(m_info!=Success)
00159         return;
00160 
00161       if(m_P.size()>0)
00162         dest = m_P * b;
00163       else
00164         dest = b;
00165 
00166       if(m_matrix.nonZeros()>0) // otherwise L==I
00167         derived().matrixL().solveInPlace(dest);
00168 
00169       if(m_diag.size()>0)
00170         dest = m_diag.asDiagonal().inverse() * dest;
00171 
00172       if (m_matrix.nonZeros()>0) // otherwise U==I
00173         derived().matrixU().solveInPlace(dest);
00174 
00175       if(m_P.size()>0)
00176         dest = m_Pinv * dest;
00177     }
00178 
00179 #endif // EIGEN_PARSED_BY_DOXYGEN
00180 
00181   protected:
00182     
00184     template<bool DoLDLT>
00185     void compute(const MatrixType& matrix)
00186     {
00187       eigen_assert(matrix.rows()==matrix.cols());
00188       Index size = matrix.cols();
00189       CholMatrixType ap(size,size);
00190       ordering(matrix, ap);
00191       analyzePattern_preordered(ap, DoLDLT);
00192       factorize_preordered<DoLDLT>(ap);
00193     }
00194     
00195     template<bool DoLDLT>
00196     void factorize(const MatrixType& a)
00197     {
00198       eigen_assert(a.rows()==a.cols());
00199       int size = a.cols();
00200       CholMatrixType ap(size,size);
00201       ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P);
00202       factorize_preordered<DoLDLT>(ap);
00203     }
00204 
00205     template<bool DoLDLT>
00206     void factorize_preordered(const CholMatrixType& a);
00207 
00208     void analyzePattern(const MatrixType& a, bool doLDLT)
00209     {
00210       eigen_assert(a.rows()==a.cols());
00211       int size = a.cols();
00212       CholMatrixType ap(size,size);
00213       ordering(a, ap);
00214       analyzePattern_preordered(ap,doLDLT);
00215     }
00216     void analyzePattern_preordered(const CholMatrixType& a, bool doLDLT);
00217     
00218     void ordering(const MatrixType& a, CholMatrixType& ap);
00219 
00221     struct keep_diag {
00222       inline bool operator() (const Index& row, const Index& col, const Scalar&) const
00223       {
00224         return row!=col;
00225       }
00226     };
00227 
00228     mutable ComputationInfo m_info;
00229     bool m_isInitialized;
00230     bool m_factorizationIsOk;
00231     bool m_analysisIsOk;
00232     
00233     CholMatrixType m_matrix;
00234     VectorType m_diag;                                // the diagonal coefficients (LDLT mode)
00235     VectorXi m_parent;                                // elimination tree
00236     VectorXi m_nonZerosPerCol;
00237     PermutationMatrix<Dynamic,Dynamic,Index> m_P;     // the permutation
00238     PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv;  // the inverse permutation
00239 
00240     RealScalar m_shiftOffset;
00241     RealScalar m_shiftScale;
00242 };
00243 
00244 template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialLLT;
00245 template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialLDLT;
00246 template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialCholesky;
00247 
00248 namespace internal {
00249 
00250 template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
00251 {
00252   typedef _MatrixType MatrixType;
00253   typedef _Ordering OrderingType;
00254   enum { UpLo = _UpLo };
00255   typedef typename MatrixType::Scalar                         Scalar;
00256   typedef typename MatrixType::Index                          Index;
00257   typedef SparseMatrix<Scalar, ColMajor, Index>               CholMatrixType;
00258   typedef SparseTriangularView<CholMatrixType, Eigen::Lower>  MatrixL;
00259   typedef SparseTriangularView<typename CholMatrixType::AdjointReturnType, Eigen::Upper>   MatrixU;
00260   static inline MatrixL getL(const MatrixType& m) { return m; }
00261   static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
00262 };
00263 
00264 template<typename _MatrixType,int _UpLo, typename _Ordering> struct traits<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
00265 {
00266   typedef _MatrixType MatrixType;
00267   typedef _Ordering OrderingType;
00268   enum { UpLo = _UpLo };
00269   typedef typename MatrixType::Scalar                             Scalar;
00270   typedef typename MatrixType::Index                              Index;
00271   typedef SparseMatrix<Scalar, ColMajor, Index>                   CholMatrixType;
00272   typedef SparseTriangularView<CholMatrixType, Eigen::UnitLower>  MatrixL;
00273   typedef SparseTriangularView<typename CholMatrixType::AdjointReturnType, Eigen::UnitUpper> MatrixU;
00274   static inline MatrixL getL(const MatrixType& m) { return m; }
00275   static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
00276 };
00277 
00278 template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
00279 {
00280   typedef _MatrixType MatrixType;
00281   typedef _Ordering OrderingType;
00282   enum { UpLo = _UpLo };
00283 };
00284 
00285 }
00286 
00305 template<typename _MatrixType, int _UpLo, typename _Ordering>
00306     class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
00307 {
00308 public:
00309     typedef _MatrixType MatrixType;
00310     enum { UpLo = _UpLo };
00311     typedef SimplicialCholeskyBase<SimplicialLLT> Base;
00312     typedef typename MatrixType::Scalar Scalar;
00313     typedef typename MatrixType::RealScalar RealScalar;
00314     typedef typename MatrixType::Index Index;
00315     typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
00316     typedef Matrix<Scalar,Dynamic,1> VectorType;
00317     typedef internal::traits<SimplicialLLT> Traits;
00318     typedef typename Traits::MatrixL  MatrixL;
00319     typedef typename Traits::MatrixU  MatrixU;
00320 public:
00322     SimplicialLLT() : Base() {}
00324     SimplicialLLT(const MatrixType& matrix)
00325         : Base(matrix) {}
00326 
00328     inline const MatrixL matrixL() const {
00329         eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized");
00330         return Traits::getL(Base::m_matrix);
00331     }
00332 
00334     inline const MatrixU matrixU() const {
00335         eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized");
00336         return Traits::getU(Base::m_matrix);
00337     }
00338     
00340     SimplicialLLT& compute(const MatrixType& matrix)
00341     {
00342       Base::template compute<false>(matrix);
00343       return *this;
00344     }
00345 
00352     void analyzePattern(const MatrixType& a)
00353     {
00354       Base::analyzePattern(a, false);
00355     }
00356 
00363     void factorize(const MatrixType& a)
00364     {
00365       Base::template factorize<false>(a);
00366     }
00367 
00369     Scalar determinant() const
00370     {
00371       Scalar detL = Base::m_matrix.diagonal().prod();
00372       return numext::abs2(detL);
00373     }
00374 };
00375 
00394 template<typename _MatrixType, int _UpLo, typename _Ordering>
00395     class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
00396 {
00397 public:
00398     typedef _MatrixType MatrixType;
00399     enum { UpLo = _UpLo };
00400     typedef SimplicialCholeskyBase<SimplicialLDLT> Base;
00401     typedef typename MatrixType::Scalar Scalar;
00402     typedef typename MatrixType::RealScalar RealScalar;
00403     typedef typename MatrixType::Index Index;
00404     typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
00405     typedef Matrix<Scalar,Dynamic,1> VectorType;
00406     typedef internal::traits<SimplicialLDLT> Traits;
00407     typedef typename Traits::MatrixL  MatrixL;
00408     typedef typename Traits::MatrixU  MatrixU;
00409 public:
00411     SimplicialLDLT() : Base() {}
00412 
00414     SimplicialLDLT(const MatrixType& matrix)
00415         : Base(matrix) {}
00416 
00418     inline const VectorType vectorD() const {
00419         eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
00420         return Base::m_diag;
00421     }
00423     inline const MatrixL matrixL() const {
00424         eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
00425         return Traits::getL(Base::m_matrix);
00426     }
00427 
00429     inline const MatrixU matrixU() const {
00430         eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
00431         return Traits::getU(Base::m_matrix);
00432     }
00433 
00435     SimplicialLDLT& compute(const MatrixType& matrix)
00436     {
00437       Base::template compute<true>(matrix);
00438       return *this;
00439     }
00440     
00447     void analyzePattern(const MatrixType& a)
00448     {
00449       Base::analyzePattern(a, true);
00450     }
00451 
00458     void factorize(const MatrixType& a)
00459     {
00460       Base::template factorize<true>(a);
00461     }
00462 
00464     Scalar determinant() const
00465     {
00466       return Base::m_diag.prod();
00467     }
00468 };
00469 
00476 template<typename _MatrixType, int _UpLo, typename _Ordering>
00477     class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
00478 {
00479 public:
00480     typedef _MatrixType MatrixType;
00481     enum { UpLo = _UpLo };
00482     typedef SimplicialCholeskyBase<SimplicialCholesky> Base;
00483     typedef typename MatrixType::Scalar Scalar;
00484     typedef typename MatrixType::RealScalar RealScalar;
00485     typedef typename MatrixType::Index Index;
00486     typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
00487     typedef Matrix<Scalar,Dynamic,1> VectorType;
00488     typedef internal::traits<SimplicialCholesky> Traits;
00489     typedef internal::traits<SimplicialLDLT<MatrixType,UpLo> > LDLTTraits;
00490     typedef internal::traits<SimplicialLLT<MatrixType,UpLo>  > LLTTraits;
00491   public:
00492     SimplicialCholesky() : Base(), m_LDLT(true) {}
00493 
00494     SimplicialCholesky(const MatrixType& matrix)
00495       : Base(), m_LDLT(true)
00496     {
00497       compute(matrix);
00498     }
00499 
00500     SimplicialCholesky& setMode(SimplicialCholeskyMode mode)
00501     {
00502       switch(mode)
00503       {
00504       case SimplicialCholeskyLLT:
00505         m_LDLT = false;
00506         break;
00507       case SimplicialCholeskyLDLT:
00508         m_LDLT = true;
00509         break;
00510       default:
00511         break;
00512       }
00513 
00514       return *this;
00515     }
00516 
00517     inline const VectorType vectorD() const {
00518         eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized");
00519         return Base::m_diag;
00520     }
00521     inline const CholMatrixType rawMatrix() const {
00522         eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized");
00523         return Base::m_matrix;
00524     }
00525     
00527     SimplicialCholesky& compute(const MatrixType& matrix)
00528     {
00529       if(m_LDLT)
00530         Base::template compute<true>(matrix);
00531       else
00532         Base::template compute<false>(matrix);
00533       return *this;
00534     }
00535 
00542     void analyzePattern(const MatrixType& a)
00543     {
00544       Base::analyzePattern(a, m_LDLT);
00545     }
00546 
00553     void factorize(const MatrixType& a)
00554     {
00555       if(m_LDLT)
00556         Base::template factorize<true>(a);
00557       else
00558         Base::template factorize<false>(a);
00559     }
00560 
00562     template<typename Rhs,typename Dest>
00563     void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
00564     {
00565       eigen_assert(Base::m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
00566       eigen_assert(Base::m_matrix.rows()==b.rows());
00567 
00568       if(Base::m_info!=Success)
00569         return;
00570 
00571       if(Base::m_P.size()>0)
00572         dest = Base::m_P * b;
00573       else
00574         dest = b;
00575 
00576       if(Base::m_matrix.nonZeros()>0) // otherwise L==I
00577       {
00578         if(m_LDLT)
00579           LDLTTraits::getL(Base::m_matrix).solveInPlace(dest);
00580         else
00581           LLTTraits::getL(Base::m_matrix).solveInPlace(dest);
00582       }
00583 
00584       if(Base::m_diag.size()>0)
00585         dest = Base::m_diag.asDiagonal().inverse() * dest;
00586 
00587       if (Base::m_matrix.nonZeros()>0) // otherwise I==I
00588       {
00589         if(m_LDLT)
00590           LDLTTraits::getU(Base::m_matrix).solveInPlace(dest);
00591         else
00592           LLTTraits::getU(Base::m_matrix).solveInPlace(dest);
00593       }
00594 
00595       if(Base::m_P.size()>0)
00596         dest = Base::m_Pinv * dest;
00597     }
00598     
00599     Scalar determinant() const
00600     {
00601       if(m_LDLT)
00602       {
00603         return Base::m_diag.prod();
00604       }
00605       else
00606       {
00607         Scalar detL = Diagonal<const CholMatrixType>(Base::m_matrix).prod();
00608         return numext::abs2(detL);
00609       }
00610     }
00611     
00612   protected:
00613     bool m_LDLT;
00614 };
00615 
00616 template<typename Derived>
00617 void SimplicialCholeskyBase<Derived>::ordering(const MatrixType& a, CholMatrixType& ap)
00618 {
00619   eigen_assert(a.rows()==a.cols());
00620   const Index size = a.rows();
00621   // Note that amd compute the inverse permutation
00622   {
00623     CholMatrixType C;
00624     C = a.template selfadjointView<UpLo>();
00625     
00626     OrderingType ordering;
00627     ordering(C,m_Pinv);
00628   }
00629 
00630   if(m_Pinv.size()>0)
00631     m_P = m_Pinv.inverse();
00632   else
00633     m_P.resize(0);
00634 
00635   ap.resize(size,size);
00636   ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P);
00637 }
00638 
00639 namespace internal {
00640   
00641 template<typename Derived, typename Rhs>
00642 struct solve_retval<SimplicialCholeskyBase<Derived>, Rhs>
00643   : solve_retval_base<SimplicialCholeskyBase<Derived>, Rhs>
00644 {
00645   typedef SimplicialCholeskyBase<Derived> Dec;
00646   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
00647 
00648   template<typename Dest> void evalTo(Dest& dst) const
00649   {
00650     dec().derived()._solve(rhs(),dst);
00651   }
00652 };
00653 
00654 template<typename Derived, typename Rhs>
00655 struct sparse_solve_retval<SimplicialCholeskyBase<Derived>, Rhs>
00656   : sparse_solve_retval_base<SimplicialCholeskyBase<Derived>, Rhs>
00657 {
00658   typedef SimplicialCholeskyBase<Derived> Dec;
00659   EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
00660 
00661   template<typename Dest> void evalTo(Dest& dst) const
00662   {
00663     this->defaultEvalTo(dst);
00664   }
00665 };
00666 
00667 } // end namespace internal
00668 
00669 } // end namespace Eigen
00670 
00671 #endif // EIGEN_SIMPLICIAL_CHOLESKY_H


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:35:39