Base class for all dense matrices, vectors, and expressions. More...
#include <MatrixBase.h>
Classes | |
struct | ConstDiagonalIndexReturnType |
struct | ConstSelfAdjointViewReturnType |
struct | ConstTriangularViewReturnType |
struct | cross_product_return_type |
struct | DiagonalIndexReturnType |
struct | SelfAdjointViewReturnType |
struct | TriangularViewReturnType |
Public Types | |
enum | { SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1 } |
typedef internal::conditional < NumTraits< Scalar > ::IsComplex, CwiseUnaryOp < internal::scalar_conjugate_op < Scalar > , ConstTransposeReturnType > , ConstTransposeReturnType > ::type | AdjointReturnType |
typedef DenseBase< Derived > | Base |
typedef Block< const CwiseNullaryOp < internal::scalar_identity_op < Scalar >, SquareMatrixType > , internal::traits< Derived > ::RowsAtCompileTime, internal::traits< Derived > ::ColsAtCompileTime > | BasisReturnType |
typedef Base::CoeffReturnType | CoeffReturnType |
typedef Base::ColXpr | ColXpr |
typedef internal::conditional < NumTraits< Scalar > ::IsComplex, const CwiseUnaryOp < internal::scalar_conjugate_op < Scalar >, const Derived > , const Derived & >::type | ConjugateReturnType |
typedef CwiseNullaryOp < internal::scalar_constant_op < Scalar >, Derived > | ConstantReturnType |
typedef internal::add_const < Diagonal< const Derived, DynamicIndex > >::type | ConstDiagonalDynamicIndexReturnType |
typedef internal::add_const < Diagonal< const Derived > >::type | ConstDiagonalReturnType |
typedef Block< const Derived, internal::traits< Derived > ::ColsAtCompileTime==1?SizeMinusOne:1, internal::traits< Derived > ::ColsAtCompileTime==1?1:SizeMinusOne > | ConstStartMinusOne |
typedef Base::ConstTransposeReturnType | ConstTransposeReturnType |
typedef CwiseBinaryOp < internal::scalar_cmp_op < Scalar, internal::cmp_EQ > , const Derived, const ConstantReturnType > | CwiseScalarEqualReturnType |
typedef Diagonal< Derived, DynamicIndex > | DiagonalDynamicIndexReturnType |
typedef Diagonal< Derived > | DiagonalReturnType |
typedef Matrix< std::complex < RealScalar > , internal::traits< Derived > ::ColsAtCompileTime, 1, ColMajor > | EigenvaluesReturnType |
typedef CwiseUnaryOp < internal::scalar_quotient1_op < typename internal::traits < Derived >::Scalar >, const ConstStartMinusOne > | HNormalizedReturnType |
typedef CwiseNullaryOp < internal::scalar_identity_op < Scalar >, Derived > | IdentityReturnType |
typedef CwiseUnaryOp < internal::scalar_imag_op < Scalar >, const Derived > | ImagReturnType |
typedef internal::traits < Derived >::Index | Index |
The type of indices. | |
typedef CwiseUnaryView < internal::scalar_imag_ref_op < Scalar >, Derived > | NonConstImagReturnType |
typedef internal::conditional < NumTraits< Scalar > ::IsComplex, CwiseUnaryView < internal::scalar_real_ref_op < Scalar >, Derived >, Derived & > ::type | NonConstRealReturnType |
typedef internal::packet_traits < Scalar >::type | PacketScalar |
typedef Matrix< typename internal::traits< Derived > ::Scalar, internal::traits < Derived >::RowsAtCompileTime, internal::traits< Derived > ::ColsAtCompileTime, AutoAlign|(internal::traits < Derived >::Flags &RowMajorBit?RowMajor:ColMajor), internal::traits< Derived > ::MaxRowsAtCompileTime, internal::traits< Derived > ::MaxColsAtCompileTime > | PlainObject |
The plain matrix type corresponding to this expression. | |
typedef internal::conditional < NumTraits< Scalar > ::IsComplex, const CwiseUnaryOp < internal::scalar_real_op < Scalar >, const Derived > , const Derived & >::type | RealReturnType |
typedef NumTraits< Scalar >::Real | RealScalar |
typedef Base::RowXpr | RowXpr |
typedef internal::traits < Derived >::Scalar | Scalar |
typedef CwiseUnaryOp < internal::scalar_multiple_op < Scalar >, const Derived > | ScalarMultipleReturnType |
typedef CwiseUnaryOp < internal::scalar_quotient1_op < Scalar >, const Derived > | ScalarQuotient1ReturnType |
typedef Matrix< Scalar, EIGEN_SIZE_MAX(RowsAtCompileTime, ColsAtCompileTime), EIGEN_SIZE_MAX(RowsAtCompileTime, ColsAtCompileTime)> | SquareMatrixType |
typedef internal::stem_function < Scalar >::type | StemFunction |
typedef MatrixBase | StorageBaseType |
typedef internal::traits < Derived >::StorageKind | StorageKind |
Public Member Functions | |
const AdjointReturnType | adjoint () const |
void | adjointInPlace () |
template<typename EssentialPart > | |
void | applyHouseholderOnTheLeft (const EssentialPart &essential, const Scalar &tau, Scalar *workspace) |
template<typename EssentialPart > | |
void | applyHouseholderOnTheRight (const EssentialPart &essential, const Scalar &tau, Scalar *workspace) |
template<typename OtherDerived > | |
void | applyOnTheLeft (const EigenBase< OtherDerived > &other) |
template<typename OtherScalar > | |
void | applyOnTheLeft (Index p, Index q, const JacobiRotation< OtherScalar > &j) |
template<typename OtherDerived > | |
void | applyOnTheRight (const EigenBase< OtherDerived > &other) |
template<typename OtherScalar > | |
void | applyOnTheRight (Index p, Index q, const JacobiRotation< OtherScalar > &j) |
ArrayWrapper< Derived > | array () |
const ArrayWrapper< const Derived > | array () const |
const DiagonalWrapper< const Derived > | asDiagonal () const |
const PermutationWrapper < const Derived > | asPermutation () const |
template<typename CustomBinaryOp , typename OtherDerived > | |
EIGEN_STRONG_INLINE const CwiseBinaryOp< CustomBinaryOp, const Derived, const OtherDerived > | binaryExpr (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other, const CustomBinaryOp &func=CustomBinaryOp()) const |
RealScalar | blueNorm () const |
template<typename NewType > | |
internal::cast_return_type < Derived, const CwiseUnaryOp < internal::scalar_cast_op < typename internal::traits < Derived >::Scalar, NewType > , const Derived > >::type | cast () const |
const ColPivHouseholderQR < PlainObject > | colPivHouseholderQr () const |
template<typename ResultType > | |
void | computeInverseAndDetWithCheck (ResultType &inverse, typename ResultType::Scalar &determinant, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const |
template<typename ResultType > | |
void | computeInverseWithCheck (ResultType &inverse, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const |
ConjugateReturnType | conjugate () const |
const MatrixFunctionReturnValue < Derived > | cos () const |
const MatrixFunctionReturnValue < Derived > | cosh () const |
template<typename OtherDerived > | |
cross_product_return_type < OtherDerived >::type | cross (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
PlainObject | cross3 (const MatrixBase< OtherDerived > &other) const |
EIGEN_STRONG_INLINE const CwiseUnaryOp < internal::scalar_abs_op < Scalar >, const Derived > | cwiseAbs () const |
EIGEN_STRONG_INLINE const CwiseUnaryOp < internal::scalar_abs2_op < Scalar >, const Derived > | cwiseAbs2 () const |
template<typename OtherDerived > | |
const CwiseBinaryOp < std::equal_to< Scalar > , const Derived, const OtherDerived > | cwiseEqual (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const |
const CwiseScalarEqualReturnType | cwiseEqual (const Scalar &s) const |
const CwiseUnaryOp < internal::scalar_inverse_op < Scalar >, const Derived > | cwiseInverse () const |
template<typename OtherDerived > | |
EIGEN_STRONG_INLINE const CwiseBinaryOp < internal::scalar_max_op < Scalar >, const Derived, const OtherDerived > | cwiseMax (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const |
EIGEN_STRONG_INLINE const CwiseBinaryOp < internal::scalar_max_op < Scalar >, const Derived, const ConstantReturnType > | cwiseMax (const Scalar &other) const |
template<typename OtherDerived > | |
EIGEN_STRONG_INLINE const CwiseBinaryOp < internal::scalar_min_op < Scalar >, const Derived, const OtherDerived > | cwiseMin (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const |
EIGEN_STRONG_INLINE const CwiseBinaryOp < internal::scalar_min_op < Scalar >, const Derived, const ConstantReturnType > | cwiseMin (const Scalar &other) const |
template<typename OtherDerived > | |
const CwiseBinaryOp < std::not_equal_to< Scalar > , const Derived, const OtherDerived > | cwiseNotEqual (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const |
template<typename OtherDerived > | |
EIGEN_STRONG_INLINE const CwiseBinaryOp < internal::scalar_quotient_op < Scalar >, const Derived, const OtherDerived > | cwiseQuotient (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const |
const CwiseUnaryOp < internal::scalar_sqrt_op < Scalar >, const Derived > | cwiseSqrt () const |
Scalar | determinant () const |
DiagonalReturnType | diagonal () |
ConstDiagonalReturnType | diagonal () const |
template<int Index> | |
DiagonalIndexReturnType< Index > ::Type | diagonal () |
template<int Index> | |
ConstDiagonalIndexReturnType < Index >::Type | diagonal () const |
DiagonalDynamicIndexReturnType | diagonal (Index index) |
ConstDiagonalDynamicIndexReturnType | diagonal (Index index) const |
Index | diagonalSize () const |
template<typename OtherDerived > | |
internal::scalar_product_traits < typename internal::traits < Derived >::Scalar, typename internal::traits< OtherDerived > ::Scalar >::ReturnType | dot (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
EIGEN_STRONG_INLINE const | EIGEN_CWISE_PRODUCT_RETURN_TYPE (Derived, OtherDerived) cwiseProduct(const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const |
EigenvaluesReturnType | eigenvalues () const |
Computes the eigenvalues of a matrix. | |
Matrix< Scalar, 3, 1 > | eulerAngles (Index a0, Index a1, Index a2) const |
const MatrixExponentialReturnValue < Derived > | exp () const |
const ForceAlignedAccess< Derived > | forceAlignedAccess () const |
ForceAlignedAccess< Derived > | forceAlignedAccess () |
template<bool Enable> | |
internal::add_const_on_value_type < typename internal::conditional< Enable, ForceAlignedAccess< Derived > , Derived & >::type >::type | forceAlignedAccessIf () const |
template<bool Enable> | |
internal::conditional< Enable, ForceAlignedAccess< Derived > , Derived & >::type | forceAlignedAccessIf () |
const FullPivHouseholderQR < PlainObject > | fullPivHouseholderQr () const |
const FullPivLU< PlainObject > | fullPivLu () const |
const HNormalizedReturnType | hnormalized () const |
const HouseholderQR< PlainObject > | householderQr () const |
RealScalar | hypotNorm () const |
const ImagReturnType | imag () const |
NonConstImagReturnType | imag () |
const internal::inverse_impl < Derived > | inverse () const |
bool | isDiagonal (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isIdentity (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isLowerTriangular (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
template<typename OtherDerived > | |
bool | isOrthogonal (const MatrixBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isUnitary (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isUpperTriangular (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
JacobiSVD< PlainObject > | jacobiSvd (unsigned int computationOptions=0) const |
template<typename ProductDerived , typename Lhs , typename Rhs > | |
Derived & | lazyAssign (const ProductBase< ProductDerived, Lhs, Rhs > &other) |
template<typename MatrixPower , typename Lhs , typename Rhs > | |
Derived & | lazyAssign (const MatrixPowerProduct< MatrixPower, Lhs, Rhs > &other) |
template<typename OtherDerived > | |
const LazyProductReturnType < Derived, OtherDerived > ::Type | lazyProduct (const MatrixBase< OtherDerived > &other) const |
const LDLT< PlainObject > | ldlt () const |
const LLT< PlainObject > | llt () const |
const MatrixLogarithmReturnValue < Derived > | log () const |
template<int p> | |
RealScalar | lpNorm () const |
template<typename EssentialPart > | |
void | makeHouseholder (EssentialPart &essential, Scalar &tau, RealScalar &beta) const |
void | makeHouseholderInPlace (Scalar &tau, RealScalar &beta) |
MatrixBase< Derived > & | matrix () |
const MatrixBase< Derived > & | matrix () const |
const MatrixFunctionReturnValue < Derived > | matrixFunction (StemFunction f) const |
NoAlias< Derived, Eigen::MatrixBase > | noalias () |
RealScalar | norm () const |
void | normalize () |
const PlainObject | normalized () const |
template<typename OtherDerived > | |
bool | operator!= (const MatrixBase< OtherDerived > &other) const |
const ScalarMultipleReturnType | operator* (const Scalar &scalar) const |
const CwiseUnaryOp < internal::scalar_multiple2_op < Scalar, std::complex< Scalar > >, const Derived > | operator* (const std::complex< Scalar > &scalar) const |
template<typename Derived > | |
MatrixBase< Derived > ::ScalarMultipleReturnType | operator* (const UniformScaling< Scalar > &s) const |
template<typename OtherDerived > | |
const ProductReturnType < Derived, OtherDerived > ::Type | operator* (const MatrixBase< OtherDerived > &other) const |
template<typename DiagonalDerived > | |
const DiagonalProduct< Derived, DiagonalDerived, OnTheRight > | operator* (const DiagonalBase< DiagonalDerived > &diagonal) const |
template<typename OtherDerived > | |
Derived & | operator*= (const EigenBase< OtherDerived > &other) |
template<typename OtherDerived > | |
Derived & | operator+= (const MatrixBase< OtherDerived > &other) |
const CwiseUnaryOp < internal::scalar_opposite_op < typename internal::traits < Derived >::Scalar >, const Derived > | operator- () const |
template<typename OtherDerived > | |
Derived & | operator-= (const MatrixBase< OtherDerived > &other) |
const CwiseUnaryOp < internal::scalar_quotient1_op < typename internal::traits < Derived >::Scalar >, const Derived > | operator/ (const Scalar &scalar) const |
Derived & | operator= (const MatrixBase &other) |
template<typename OtherDerived > | |
Derived & | operator= (const DenseBase< OtherDerived > &other) |
template<typename OtherDerived > | |
Derived & | operator= (const EigenBase< OtherDerived > &other) |
Copies the generic expression other into *this. | |
template<typename OtherDerived > | |
Derived & | operator= (const ReturnByValue< OtherDerived > &other) |
template<typename OtherDerived > | |
bool | operator== (const MatrixBase< OtherDerived > &other) const |
RealScalar | operatorNorm () const |
Computes the L2 operator norm. | |
const PartialPivLU< PlainObject > | partialPivLu () const |
const MatrixPowerReturnValue < Derived > | pow (const RealScalar &p) const |
RealReturnType | real () const |
NonConstRealReturnType | real () |
template<unsigned int UpLo> | |
SelfAdjointViewReturnType < UpLo >::Type | selfadjointView () |
template<unsigned int UpLo> | |
ConstSelfAdjointViewReturnType < UpLo >::Type | selfadjointView () const |
Derived & | setIdentity () |
Derived & | setIdentity (Index rows, Index cols) |
Resizes to the given size, and writes the identity expression (not necessarily square) into *this. | |
const MatrixFunctionReturnValue < Derived > | sin () const |
const MatrixFunctionReturnValue < Derived > | sinh () const |
const SparseView< Derived > | sparseView (const Scalar &m_reference=Scalar(0), const typename NumTraits< Scalar >::Real &m_epsilon=NumTraits< Scalar >::dummy_precision()) const |
const MatrixSquareRootReturnValue < Derived > | sqrt () const |
RealScalar | squaredNorm () const |
RealScalar | stableNorm () const |
Scalar | trace () const |
template<unsigned int Mode> | |
TriangularViewReturnType< Mode > ::Type | triangularView () |
template<unsigned int Mode> | |
ConstTriangularViewReturnType < Mode >::Type | triangularView () const |
template<typename CustomUnaryOp > | |
const CwiseUnaryOp < CustomUnaryOp, const Derived > | unaryExpr (const CustomUnaryOp &func=CustomUnaryOp()) const |
Apply a unary operator coefficient-wise. | |
template<typename CustomViewOp > | |
const CwiseUnaryView < CustomViewOp, const Derived > | unaryViewExpr (const CustomViewOp &func=CustomViewOp()) const |
PlainObject | unitOrthogonal (void) const |
Static Public Member Functions | |
static const IdentityReturnType | Identity () |
static const IdentityReturnType | Identity (Index rows, Index cols) |
static const BasisReturnType | Unit (Index size, Index i) |
static const BasisReturnType | Unit (Index i) |
static const BasisReturnType | UnitW () |
static const BasisReturnType | UnitX () |
static const BasisReturnType | UnitY () |
static const BasisReturnType | UnitZ () |
Protected Member Functions | |
MatrixBase () | |
template<typename OtherDerived > | |
Derived & | operator+= (const ArrayBase< OtherDerived > &) |
template<typename OtherDerived > | |
Derived & | operator-= (const ArrayBase< OtherDerived > &) |
Private Member Functions | |
MatrixBase (int) | |
MatrixBase (int, int) | |
template<typename OtherDerived > | |
MatrixBase (const MatrixBase< OtherDerived > &) | |
Friends | |
const ScalarMultipleReturnType | operator* (const Scalar &scalar, const StorageBaseType &matrix) |
const CwiseUnaryOp < internal::scalar_multiple2_op < Scalar, std::complex< Scalar > >, const Derived > | operator* (const std::complex< Scalar > &scalar, const StorageBaseType &matrix) |
Base class for all dense matrices, vectors, and expressions.
This class is the base that is inherited by all matrix, vector, and related expression types. Most of the Eigen API is contained in this class, and its base classes. Other important classes for the Eigen API are Matrix, and VectorwiseOp.
Note that some methods are defined in other modules such as the LU_Module LU module for all functions related to matrix inversions.
Derived | is the derived type, e.g. a matrix type, or an expression, etc. |
When writing a function taking Eigen objects as argument, if you want your function to take as argument any matrix, vector, or expression, just let it take a MatrixBase argument. As an example, here is a function printFirstRow which, given a matrix, vector, or expression x, prints the first row of x.
template<typename Derived> void printFirstRow(const Eigen::MatrixBase<Derived>& x) { cout << x.row(0) << endl; }
This class can be extended with the help of the plugin mechanism described on the page TopicCustomizingEigen by defining the preprocessor symbol EIGEN_MATRIXBASE_PLUGIN
.
Definition at line 48 of file MatrixBase.h.
typedef internal::conditional<NumTraits<Scalar>::IsComplex, CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, ConstTransposeReturnType>, ConstTransposeReturnType >::type Eigen::MatrixBase< Derived >::AdjointReturnType |
Definition at line 124 of file MatrixBase.h.
typedef DenseBase<Derived> Eigen::MatrixBase< Derived >::Base |
Reimplemented from Eigen::DenseBase< Derived >.
Reimplemented in Eigen::ScaledProduct< NestedProduct >, Eigen::MatrixWrapper< ExpressionType >, Eigen::CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, Eigen::Homogeneous< MatrixType, _Direction >, Eigen::ProductBase< Derived, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, Eigen::ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, Eigen::ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, Eigen::ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, Eigen::ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, Eigen::ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, Eigen::ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, Eigen::ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, Eigen::ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, Eigen::ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, Eigen::ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, Eigen::ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >, Eigen::Minor< MatrixType >, Eigen::DiagonalProduct< MatrixType, DiagonalType, ProductOrder >, and Eigen::Flagged< ExpressionType, Added, Removed >.
Definition at line 60 of file MatrixBase.h.
typedef Block<const CwiseNullaryOp<internal::scalar_identity_op<Scalar>, SquareMatrixType>, internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime> Eigen::MatrixBase< Derived >::BasisReturnType |
Definition at line 132 of file MatrixBase.h.
typedef Base::CoeffReturnType Eigen::MatrixBase< Derived >::CoeffReturnType |
Reimplemented from Eigen::DenseBase< Derived >.
Definition at line 85 of file MatrixBase.h.
typedef Base::ColXpr Eigen::MatrixBase< Derived >::ColXpr |
Reimplemented from Eigen::DenseBase< Derived >.
Definition at line 88 of file MatrixBase.h.
typedef internal::conditional<NumTraits<Scalar>::IsComplex, const CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const Derived>, const Derived& >::type Eigen::MatrixBase< Derived >::ConjugateReturnType |
Definition at line 24 of file MatrixBase.h.
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> Eigen::MatrixBase< Derived >::ConstantReturnType |
Reimplemented from Eigen::DenseBase< Derived >.
Definition at line 119 of file MatrixBase.h.
typedef internal::add_const<Diagonal<const Derived,DynamicIndex> >::type Eigen::MatrixBase< Derived >::ConstDiagonalDynamicIndexReturnType |
Definition at line 226 of file MatrixBase.h.
typedef internal::add_const<Diagonal<const Derived> >::type Eigen::MatrixBase< Derived >::ConstDiagonalReturnType |
Definition at line 216 of file MatrixBase.h.
typedef Block<const Derived, internal::traits<Derived>::ColsAtCompileTime==1 ? SizeMinusOne : 1, internal::traits<Derived>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> Eigen::MatrixBase< Derived >::ConstStartMinusOne |
Definition at line 415 of file MatrixBase.h.
typedef Base::ConstTransposeReturnType Eigen::MatrixBase< Derived >::ConstTransposeReturnType |
Reimplemented from Eigen::DenseBase< Derived >.
Definition at line 86 of file MatrixBase.h.
typedef CwiseBinaryOp<internal::scalar_cmp_op<Scalar,internal::cmp_EQ>, const Derived, const ConstantReturnType> Eigen::MatrixBase< Derived >::CwiseScalarEqualReturnType |
Definition at line 129 of file MatrixBase.h.
typedef Diagonal<Derived,DynamicIndex> Eigen::MatrixBase< Derived >::DiagonalDynamicIndexReturnType |
Definition at line 225 of file MatrixBase.h.
typedef Diagonal<Derived> Eigen::MatrixBase< Derived >::DiagonalReturnType |
Definition at line 214 of file MatrixBase.h.
typedef Matrix<std::complex<RealScalar>, internal::traits<Derived>::ColsAtCompileTime, 1, ColMajor> Eigen::MatrixBase< Derived >::EigenvaluesReturnType |
Reimplemented from Eigen::DenseBase< Derived >.
Definition at line 126 of file MatrixBase.h.
typedef CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>, const ConstStartMinusOne > Eigen::MatrixBase< Derived >::HNormalizedReturnType |
Definition at line 417 of file MatrixBase.h.
typedef CwiseNullaryOp<internal::scalar_identity_op<Scalar>,Derived> Eigen::MatrixBase< Derived >::IdentityReturnType |
Definition at line 128 of file MatrixBase.h.
typedef CwiseUnaryOp<internal::scalar_imag_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::ImagReturnType |
Definition at line 36 of file MatrixBase.h.
typedef internal::traits<Derived>::Index Eigen::MatrixBase< Derived >::Index |
The type of indices.
To change this, #define
the preprocessor symbol EIGEN_DEFAULT_DENSE_INDEX_TYPE
.
Reimplemented from Eigen::DenseBase< Derived >.
Definition at line 55 of file MatrixBase.h.
typedef CwiseUnaryView<internal::scalar_imag_ref_op<Scalar>, Derived> Eigen::MatrixBase< Derived >::NonConstImagReturnType |
Definition at line 38 of file MatrixBase.h.
typedef internal::conditional<NumTraits<Scalar>::IsComplex, CwiseUnaryView<internal::scalar_real_ref_op<Scalar>, Derived>, Derived& >::type Eigen::MatrixBase< Derived >::NonConstRealReturnType |
Definition at line 34 of file MatrixBase.h.
typedef internal::packet_traits<Scalar>::type Eigen::MatrixBase< Derived >::PacketScalar |
Reimplemented from Eigen::DenseBase< Derived >.
Definition at line 57 of file MatrixBase.h.
typedef Matrix<typename internal::traits<Derived>::Scalar, internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime, AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor), internal::traits<Derived>::MaxRowsAtCompileTime, internal::traits<Derived>::MaxColsAtCompileTime > Eigen::MatrixBase< Derived >::PlainObject |
The plain matrix type corresponding to this expression.
This is not necessarily exactly the return type of eval(). In the case of plain matrices, the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed that the return type of eval() is either PlainObject or const PlainObject&.
Reimplemented in Eigen::ScaledProduct< NestedProduct >, and Eigen::CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >.
Definition at line 115 of file MatrixBase.h.
typedef internal::conditional<NumTraits<Scalar>::IsComplex, const CwiseUnaryOp<internal::scalar_real_op<Scalar>, const Derived>, const Derived& >::type Eigen::MatrixBase< Derived >::RealReturnType |
Definition at line 29 of file MatrixBase.h.
typedef NumTraits<Scalar>::Real Eigen::MatrixBase< Derived >::RealScalar |
Reimplemented from Eigen::DenseBase< Derived >.
Definition at line 58 of file MatrixBase.h.
typedef Base::RowXpr Eigen::MatrixBase< Derived >::RowXpr |
Reimplemented from Eigen::DenseBase< Derived >.
Definition at line 87 of file MatrixBase.h.
typedef internal::traits<Derived>::Scalar Eigen::MatrixBase< Derived >::Scalar |
Reimplemented from Eigen::DenseBase< Derived >.
Reimplemented in Eigen::ScaledProduct< NestedProduct >.
Definition at line 56 of file MatrixBase.h.
typedef CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::ScalarMultipleReturnType |
Definition at line 17 of file MatrixBase.h.
typedef CwiseUnaryOp<internal::scalar_quotient1_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::ScalarQuotient1ReturnType |
Definition at line 19 of file MatrixBase.h.
typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime), EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> Eigen::MatrixBase< Derived >::SquareMatrixType |
type of the equivalent square matrix
Definition at line 96 of file MatrixBase.h.
typedef internal::stem_function<Scalar>::type Eigen::MatrixBase< Derived >::StemFunction |
Definition at line 445 of file MatrixBase.h.
typedef MatrixBase Eigen::MatrixBase< Derived >::StorageBaseType |
Definition at line 53 of file MatrixBase.h.
typedef internal::traits<Derived>::StorageKind Eigen::MatrixBase< Derived >::StorageKind |
Reimplemented from Eigen::DenseBase< Derived >.
Definition at line 54 of file MatrixBase.h.
anonymous enum |
Definition at line 410 of file MatrixBase.h.
Eigen::MatrixBase< Derived >::MatrixBase | ( | ) | [inline, protected] |
Definition at line 492 of file MatrixBase.h.
Eigen::MatrixBase< Derived >::MatrixBase | ( | int | ) | [explicit, private] |
Eigen::MatrixBase< Derived >::MatrixBase | ( | int | , |
int | |||
) | [private] |
Eigen::MatrixBase< Derived >::MatrixBase | ( | const MatrixBase< OtherDerived > & | ) | [explicit, private] |
const MatrixBase< Derived >::AdjointReturnType MatrixBase::adjoint | ( | void | ) | const [inline] |
Example:
Output:
m.adjointInPlace();
Definition at line 237 of file Transpose.h.
void MatrixBase::adjointInPlace | ( | ) | [inline] |
This is the "in place" version of adjoint(): it replaces *this
by its own transpose. Thus, doing
m.adjointInPlace();
has the same effect on m as doing
and is faster and also safer because in the latter line of code, forgetting the eval() results in a bug caused by aliasing.
Notice however that this method is only useful if you want to replace a matrix by its own adjoint. If you just need the adjoint of a matrix, use adjoint().
*this
must be a resizable matrix. This excludes (non-square) fixed-size matrices, block-expressions and maps.Definition at line 323 of file Transpose.h.
void MatrixBase::applyHouseholderOnTheLeft | ( | const EssentialPart & | essential, |
const Scalar & | tau, | ||
Scalar * | workspace | ||
) |
Apply the elementary reflector H given by with from the left to a vector or matrix.
On input:
essential | the essential part of the vector v |
tau | the scaling factor of the Householder transformation |
workspace | a pointer to working space with at least this->cols() * essential.size() entries |
Definition at line 112 of file Householder.h.
void MatrixBase::applyHouseholderOnTheRight | ( | const EssentialPart & | essential, |
const Scalar & | tau, | ||
Scalar * | workspace | ||
) |
Apply the elementary reflector H given by with from the right to a vector or matrix.
On input:
essential | the essential part of the vector v |
tau | the scaling factor of the Householder transformation |
workspace | a pointer to working space with at least this->cols() * essential.size() entries |
Definition at line 149 of file Householder.h.
void MatrixBase::applyOnTheLeft | ( | const EigenBase< OtherDerived > & | other | ) | [inline] |
void MatrixBase::applyOnTheLeft | ( | Index | p, |
Index | q, | ||
const JacobiRotation< OtherScalar > & | j | ||
) | [inline] |
Applies the rotation in the plane j to the rows p and q of *this
, i.e., it computes B = J * B, with .
void MatrixBase::applyOnTheRight | ( | const EigenBase< OtherDerived > & | other | ) | [inline] |
replaces *this
by *this
* other. It is equivalent to MatrixBase::operator*=().
Example:
Output:
Definition at line 535 of file MatrixBase.h.
void MatrixBase::applyOnTheRight | ( | Index | p, |
Index | q, | ||
const JacobiRotation< OtherScalar > & | j | ||
) | [inline] |
Applies the rotation in the plane j to the columns p and q of *this
, i.e., it computes B = B * J with .
ArrayWrapper<Derived> Eigen::MatrixBase< Derived >::array | ( | ) | [inline] |
Definition at line 316 of file MatrixBase.h.
const ArrayWrapper<const Derived> Eigen::MatrixBase< Derived >::array | ( | ) | const [inline] |
Definition at line 317 of file MatrixBase.h.
const DiagonalWrapper< const Derived > MatrixBase::asDiagonal | ( | ) | const [inline] |
Example:
Output:
Definition at line 278 of file DiagonalMatrix.h.
const PermutationWrapper< const Derived > MatrixBase::asPermutation | ( | ) | const |
Definition at line 714 of file PermutationMatrix.h.
EIGEN_STRONG_INLINE const CwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived> Eigen::MatrixBase< Derived >::binaryExpr | ( | const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > & | other, |
const CustomBinaryOp & | func = CustomBinaryOp() |
||
) | const [inline] |
*this
and other *this
and other The template parameter CustomBinaryOp is the type of the functor of the custom operator (see class CwiseBinaryOp for an example)
Here is an example illustrating the use of custom functors:
Output:
Definition at line 43 of file MatrixBase.h.
NumTraits< typename internal::traits< Derived >::Scalar >::Real MatrixBase::blueNorm | ( | ) | const [inline] |
*this
using the Blue's algorithm. A Portable Fortran Program to Find the Euclidean Norm of a Vector, ACM TOMS, Vol 4, Issue 1, 1978.For architecture/scalar types without vectorization, this version is much faster than stableNorm(). Otherwise the stableNorm() is faster.
Definition at line 184 of file StableNorm.h.
internal::cast_return_type<Derived,const CwiseUnaryOp<internal::scalar_cast_op<typename internal::traits<Derived>::Scalar, NewType>, const Derived> >::type Eigen::MatrixBase< Derived >::cast | ( | ) | const [inline] |
The template parameter NewScalar is the type we are casting the scalars to.
Definition at line 93 of file MatrixBase.h.
const ColPivHouseholderQR< typename MatrixBase< Derived >::PlainObject > MatrixBase::colPivHouseholderQr | ( | ) | const |
*this
.Definition at line 573 of file ColPivHouseholderQR.h.
void MatrixBase::computeInverseAndDetWithCheck | ( | ResultType & | inverse, |
typename ResultType::Scalar & | determinant, | ||
bool & | invertible, | ||
const RealScalar & | absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() |
||
) | const [inline] |
Computation of matrix inverse and determinant, with invertibility check.
This is only for fixed-size square matrices of size up to 4x4.
inverse | Reference to the matrix in which to store the inverse. |
determinant | Reference to the variable in which to store the determinant. |
invertible | Reference to the bool variable in which to store whether the matrix is invertible. |
absDeterminantThreshold | Optional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold. |
Example:
Output:
void MatrixBase::computeInverseWithCheck | ( | ResultType & | inverse, |
bool & | invertible, | ||
const RealScalar & | absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() |
||
) | const [inline] |
Computation of matrix inverse, with invertibility check.
This is only for fixed-size square matrices of size up to 4x4.
inverse | Reference to the matrix in which to store the inverse. |
invertible | Reference to the bool variable in which to store whether the matrix is invertible. |
absDeterminantThreshold | Optional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold. |
Example:
Output:
ConjugateReturnType Eigen::MatrixBase< Derived >::conjugate | ( | ) | const [inline] |
*this
.Definition at line 102 of file MatrixBase.h.
const MatrixFunctionReturnValue< Derived > MatrixBase::cos | ( | ) | const |
Definition at line 566 of file MatrixFunction.h.
const MatrixFunctionReturnValue< Derived > MatrixBase::cosh | ( | ) | const |
Definition at line 582 of file MatrixFunction.h.
MatrixBase< Derived >::template cross_product_return_type< OtherDerived >::type MatrixBase::cross | ( | const MatrixBase< OtherDerived > & | other | ) | const [inline] |
*this
and other Here is a very good explanation of cross-product: http://xkcd.com/199/
Definition at line 26 of file OrthoMethods.h.
MatrixBase< Derived >::PlainObject MatrixBase::cross3 | ( | const MatrixBase< OtherDerived > & | other | ) | const [inline] |
*this
and other using only the x, y, and z coefficientsThe size of *this
and other must be four. This function is especially useful when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization.
Definition at line 74 of file OrthoMethods.h.
EIGEN_STRONG_INLINE const CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::cwiseAbs | ( | ) | const [inline] |
*this
Example:
Output:
Definition at line 22 of file MatrixBase.h.
EIGEN_STRONG_INLINE const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::cwiseAbs2 | ( | ) | const [inline] |
*this
Example:
Output:
Definition at line 32 of file MatrixBase.h.
const CwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived> Eigen::MatrixBase< Derived >::cwiseEqual | ( | const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > & | other | ) | const [inline] |
Example:
Output:
Definition at line 42 of file MatrixBase.h.
const CwiseScalarEqualReturnType Eigen::MatrixBase< Derived >::cwiseEqual | ( | const Scalar & | s | ) | const [inline] |
*this
and a scalar s Definition at line 141 of file MatrixBase.h.
const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::cwiseInverse | ( | ) | const [inline] |
Example:
Output:
Definition at line 52 of file MatrixBase.h.
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const OtherDerived> Eigen::MatrixBase< Derived >::cwiseMax | ( | const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > & | other | ) | const [inline] |
Example:
Output:
Definition at line 99 of file MatrixBase.h.
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const ConstantReturnType> Eigen::MatrixBase< Derived >::cwiseMax | ( | const Scalar & | other | ) | const [inline] |
Definition at line 109 of file MatrixBase.h.
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const OtherDerived> Eigen::MatrixBase< Derived >::cwiseMin | ( | const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > & | other | ) | const [inline] |
Example:
Output:
Definition at line 75 of file MatrixBase.h.
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const ConstantReturnType> Eigen::MatrixBase< Derived >::cwiseMin | ( | const Scalar & | other | ) | const [inline] |
Definition at line 85 of file MatrixBase.h.
const CwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived> Eigen::MatrixBase< Derived >::cwiseNotEqual | ( | const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > & | other | ) | const [inline] |
Example:
Output:
Definition at line 61 of file MatrixBase.h.
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived> Eigen::MatrixBase< Derived >::cwiseQuotient | ( | const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > & | other | ) | const [inline] |
Example:
Output:
Definition at line 124 of file MatrixBase.h.
const CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::cwiseSqrt | ( | ) | const [inline] |
Example:
Output:
Definition at line 42 of file MatrixBase.h.
internal::traits< Derived >::Scalar MatrixBase::determinant | ( | ) | const [inline] |
Definition at line 92 of file Determinant.h.
MatrixBase< Derived >::template DiagonalIndexReturnType< Index >::Type MatrixBase::diagonal | ( | ) | [inline] |
*this
*this
is not required to be square.
Example:
Output:
*this
*this
is not required to be square.
The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.
Example:
Output:
Definition at line 168 of file Diagonal.h.
MatrixBase< Derived >::template ConstDiagonalIndexReturnType< Index >::Type MatrixBase::diagonal | ( | ) | const [inline] |
This is the const version of diagonal().
This is the const version of diagonal<int>().
Reimplemented in Eigen::CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, and Eigen::CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >.
Definition at line 176 of file Diagonal.h.
DiagonalIndexReturnType<Index>::Type Eigen::MatrixBase< Derived >::diagonal | ( | ) |
ConstDiagonalIndexReturnType<Index>::Type Eigen::MatrixBase< Derived >::diagonal | ( | ) | const |
MatrixBase< Derived >::DiagonalDynamicIndexReturnType MatrixBase::diagonal | ( | Index | index | ) | [inline] |
*this
*this
is not required to be square.
The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.
Example:
Output:
Definition at line 194 of file Diagonal.h.
MatrixBase< Derived >::ConstDiagonalDynamicIndexReturnType MatrixBase::diagonal | ( | Index | index | ) | const [inline] |
This is the const version of diagonal(Index).
Reimplemented in Eigen::CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >.
Definition at line 202 of file Diagonal.h.
Index Eigen::MatrixBase< Derived >::diagonalSize | ( | ) | const [inline] |
Definition at line 101 of file MatrixBase.h.
internal::scalar_product_traits< typename internal::traits< Derived >::Scalar, typename internal::traits< OtherDerived >::Scalar >::ReturnType MatrixBase::dot | ( | const MatrixBase< OtherDerived > & | other | ) | const |
EIGEN_STRONG_INLINE const Eigen::MatrixBase< Derived >::EIGEN_CWISE_PRODUCT_RETURN_TYPE | ( | Derived | , |
OtherDerived | |||
) | const [inline] |
Example:
Output:
Definition at line 22 of file MatrixBase.h.
MatrixBase< Derived >::EigenvaluesReturnType MatrixBase::eigenvalues | ( | ) | const [inline] |
Computes the eigenvalues of a matrix.
This function computes the eigenvalues with the help of the EigenSolver class (for real matrices) or the ComplexEigenSolver class (for complex matrices).
The eigenvalues are repeated according to their algebraic multiplicity, so there are as many eigenvalues as rows in the matrix.
The SelfAdjointView class provides a better algorithm for selfadjoint matrices.
Example:
Output:
Definition at line 67 of file MatrixBaseEigenvalues.h.
const MatrixExponentialReturnValue< Derived > MatrixBase::exp | ( | ) | const |
Definition at line 443 of file MatrixExponential.h.
const ForceAlignedAccess< Derived > MatrixBase::forceAlignedAccess | ( | ) | const [inline] |
Reimplemented from Eigen::DenseBase< Derived >.
Definition at line 107 of file ForceAlignedAccess.h.
ForceAlignedAccess< Derived > MatrixBase::forceAlignedAccess | ( | ) | [inline] |
Reimplemented from Eigen::DenseBase< Derived >.
Definition at line 117 of file ForceAlignedAccess.h.
internal::add_const_on_value_type< typename internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type >::type MatrixBase::forceAlignedAccessIf | ( | ) | const [inline] |
Reimplemented from Eigen::DenseBase< Derived >.
Definition at line 128 of file ForceAlignedAccess.h.
internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type MatrixBase::forceAlignedAccessIf | ( | ) | [inline] |
Reimplemented from Eigen::DenseBase< Derived >.
Definition at line 139 of file ForceAlignedAccess.h.
const FullPivHouseholderQR< typename MatrixBase< Derived >::PlainObject > MatrixBase::fullPivHouseholderQr | ( | ) | const |
*this
.Definition at line 615 of file FullPivHouseholderQR.h.
const FullPivLU< typename MatrixBase< Derived >::PlainObject > MatrixBase::fullPivLu | ( | ) | const [inline] |
*this
.Definition at line 744 of file FullPivLU.h.
const MatrixBase< Derived >::HNormalizedReturnType MatrixBase::hnormalized | ( | ) | const [inline] |
*this
Example:
Output:
Definition at line 158 of file Homogeneous.h.
const HouseholderQR< typename MatrixBase< Derived >::PlainObject > MatrixBase::householderQr | ( | ) | const |
*this
.Definition at line 381 of file HouseholderQR.h.
NumTraits< typename internal::traits< Derived >::Scalar >::Real MatrixBase::hypotNorm | ( | ) | const [inline] |
*this
avoiding undeflow and overflow. This version use a concatenation of hypot() calls, and it is very slow.Definition at line 196 of file StableNorm.h.
EIGEN_STRONG_INLINE const MatrixBase< Derived >::IdentityReturnType MatrixBase::Identity | ( | ) | [static] |
This variant is only for fixed-size MatrixBase types. For dynamic-size types, you need to use the variant taking size arguments.
Example:
Output:
Definition at line 700 of file CwiseNullaryOp.h.
EIGEN_STRONG_INLINE const MatrixBase< Derived >::IdentityReturnType MatrixBase::Identity | ( | Index | nbRows, |
Index | nbCols | ||
) | [static] |
The parameters nbRows and nbCols are the number of rows and of columns of the returned matrix. Must be compatible with this MatrixBase type.
This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Identity() should be used instead.
Example:
Output:
Definition at line 683 of file CwiseNullaryOp.h.
const ImagReturnType Eigen::MatrixBase< Derived >::imag | ( | ) | const [inline] |
*this
.Definition at line 117 of file MatrixBase.h.
NonConstImagReturnType Eigen::MatrixBase< Derived >::imag | ( | ) | [inline] |
*this
.Definition at line 173 of file MatrixBase.h.
const internal::inverse_impl< Derived > MatrixBase::inverse | ( | ) | const [inline] |
For small fixed sizes up to 4x4, this method uses cofactors. In the general case, this method uses class PartialPivLU.
bool MatrixBase::isDiagonal | ( | const RealScalar & | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
Example:
Output:
Definition at line 292 of file DiagonalMatrix.h.
bool MatrixBase::isIdentity | ( | const RealScalar & | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
Example:
Output:
Definition at line 717 of file CwiseNullaryOp.h.
bool MatrixBase::isLowerTriangular | ( | const RealScalar & | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
Definition at line 817 of file TriangularMatrix.h.
bool MatrixBase::isOrthogonal | ( | const MatrixBase< OtherDerived > & | other, |
const RealScalar & | prec = NumTraits<Scalar>::dummy_precision() |
||
) | const |
bool MatrixBase::isUnitary | ( | const RealScalar & | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
m.isUnitary()
returns true if and only if the columns (equivalently, the rows) of m form an orthonormal basis.Example:
Output:
bool MatrixBase::isUpperTriangular | ( | const RealScalar & | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
Definition at line 791 of file TriangularMatrix.h.
JacobiSVD< typename MatrixBase< Derived >::PlainObject > MatrixBase::jacobiSvd | ( | unsigned int | computationOptions = 0 | ) | const |
*this
computed by two-sided Jacobi transformations.Definition at line 969 of file Eigen/src/SVD/JacobiSVD.h.
Derived & MatrixBase::lazyAssign | ( | const ProductBase< ProductDerived, Lhs, Rhs > & | other | ) |
Definition at line 282 of file ProductBase.h.
Derived& Eigen::MatrixBase< Derived >::lazyAssign | ( | const MatrixPowerProduct< MatrixPower, Lhs, Rhs > & | other | ) |
const LazyProductReturnType< Derived, OtherDerived >::Type MatrixBase::lazyProduct | ( | const MatrixBase< OtherDerived > & | other | ) | const |
*this
and other without implicit evaluation.The returned product will behave like any other expressions: the coefficients of the product will be computed once at a time as requested. This might be useful in some extremely rare cases when only a small and no coherent fraction of the result's coefficients have to be computed.
Definition at line 612 of file GeneralProduct.h.
const LDLT< typename MatrixBase< Derived >::PlainObject > MatrixBase::ldlt | ( | ) | const [inline] |
const LLT< typename MatrixBase< Derived >::PlainObject > MatrixBase::llt | ( | ) | const [inline] |
const MatrixLogarithmReturnValue< Derived > MatrixBase::log | ( | ) | const |
Definition at line 478 of file MatrixLogarithm.h.
NumTraits< typename internal::traits< Derived >::Scalar >::Real MatrixBase::lpNorm | ( | ) | const [inline] |
Reimplemented from Eigen::DenseBase< Derived >.
void MatrixBase::makeHouseholder | ( | EssentialPart & | essential, |
Scalar & | tau, | ||
RealScalar & | beta | ||
) | const |
Computes the elementary reflector H such that: where the transformation H is: and the vector v is:
On output:
essential | the essential part of the vector v |
tau | the scaling factor of the Householder transformation |
beta | the result of H * *this |
Definition at line 65 of file Householder.h.
void MatrixBase::makeHouseholderInPlace | ( | Scalar & | tau, |
RealScalar & | beta | ||
) |
Computes the elementary reflector H such that: where the transformation H is: and the vector v is:
The essential part of the vector v
is stored in *this.
On output:
tau | the scaling factor of the Householder transformation |
beta | the result of H * *this |
Definition at line 42 of file Householder.h.
MatrixBase<Derived>& Eigen::MatrixBase< Derived >::matrix | ( | ) | [inline] |
Definition at line 311 of file MatrixBase.h.
const MatrixBase<Derived>& Eigen::MatrixBase< Derived >::matrix | ( | ) | const [inline] |
Definition at line 312 of file MatrixBase.h.
const MatrixFunctionReturnValue< Derived > MatrixBase::matrixFunction | ( | StemFunction | f | ) | const |
Definition at line 551 of file MatrixFunction.h.
NoAlias< Derived, MatrixBase > MatrixBase::noalias | ( | ) |
*this
with an operator= assuming no aliasing between *this
and the source expression.More precisely, noalias() allows to bypass the EvalBeforeAssignBit flag. Currently, even though several expressions may alias, only product expressions have this flag. Therefore, noalias() is only usefull when the source expression contains a matrix product.
Here are some examples where noalias is usefull:
D.noalias() = A * B; D.noalias() += A.transpose() * B; D.noalias() -= 2 * A * B.adjoint();
On the other hand the following example will lead to a wrong result:
A.noalias() = A * B;
because the result matrix A is also an operand of the matrix product. Therefore, there is no alternative than evaluating A * B in a temporary, that is the default behavior when you write:
A = A * B;
NumTraits< typename internal::traits< Derived >::Scalar >::Real MatrixBase::norm | ( | ) | const [inline] |
*this
, and for matrices the Frobenius norm. In both cases, it consists in the square root of the sum of the square of all the matrix entries. For vectors, this is also equals to the square root of the dot product of *this
with itself.void MatrixBase::normalize | ( | ) | [inline] |
Normalizes the vector, i.e. divides it by its own norm.
const MatrixBase< Derived >::PlainObject MatrixBase::normalized | ( | ) | const [inline] |
bool Eigen::MatrixBase< Derived >::operator!= | ( | const MatrixBase< OtherDerived > & | other | ) | const [inline] |
*this
and other are not exactly equal to each other. Definition at line 295 of file MatrixBase.h.
const ScalarMultipleReturnType Eigen::MatrixBase< Derived >::operator* | ( | const Scalar & | scalar | ) | const [inline] |
*this
scaled by the scalar factor scalar Definition at line 50 of file MatrixBase.h.
const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const Derived> Eigen::MatrixBase< Derived >::operator* | ( | const std::complex< Scalar > & | scalar | ) | const [inline] |
Overloaded for efficient real matrix times complex scalar value
Definition at line 70 of file MatrixBase.h.
MatrixBase<Derived>::ScalarMultipleReturnType Eigen::MatrixBase< Derived >::operator* | ( | const UniformScaling< Scalar > & | s | ) | const |
Concatenates a linear transformation matrix and a uniform scaling
Definition at line 111 of file Eigen/src/Geometry/Scaling.h.
const ProductReturnType< Derived, OtherDerived >::Type MatrixBase::operator* | ( | const MatrixBase< OtherDerived > & | other | ) | const [inline] |
*this
and other.Definition at line 571 of file GeneralProduct.h.
const DiagonalProduct< Derived, DiagonalDerived, OnTheRight > MatrixBase::operator* | ( | const DiagonalBase< DiagonalDerived > & | a_diagonal | ) | const [inline] |
*this
by the diagonal matrix diagonal. Definition at line 123 of file DiagonalProduct.h.
Derived & MatrixBase::operator*= | ( | const EigenBase< OtherDerived > & | other | ) | [inline] |
replaces *this
by *this
* other.
*this
Example:
Output:
Definition at line 522 of file MatrixBase.h.
EIGEN_STRONG_INLINE Derived & MatrixBase::operator+= | ( | const MatrixBase< OtherDerived > & | other | ) |
replaces *this
by *this
+ other.
*this
Definition at line 220 of file CwiseBinaryOp.h.
Derived& Eigen::MatrixBase< Derived >::operator+= | ( | const ArrayBase< OtherDerived > & | ) | [inline, protected] |
Definition at line 500 of file MatrixBase.h.
const CwiseUnaryOp<internal::scalar_opposite_op<typename internal::traits<Derived>::Scalar>, const Derived> Eigen::MatrixBase< Derived >::operator- | ( | ) | const [inline] |
*this
Definition at line 45 of file MatrixBase.h.
EIGEN_STRONG_INLINE Derived & MatrixBase::operator-= | ( | const MatrixBase< OtherDerived > & | other | ) |
replaces *this
by *this
- other.
*this
Definition at line 206 of file CwiseBinaryOp.h.
Derived& Eigen::MatrixBase< Derived >::operator-= | ( | const ArrayBase< OtherDerived > & | ) | [inline, protected] |
Definition at line 503 of file MatrixBase.h.
const CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>, const Derived> Eigen::MatrixBase< Derived >::operator/ | ( | const Scalar & | scalar | ) | const [inline] |
*this
divided by the scalar value scalar Definition at line 62 of file MatrixBase.h.
EIGEN_STRONG_INLINE Derived & MatrixBase::operator= | ( | const MatrixBase< Derived > & | other | ) |
EIGEN_STRONG_INLINE Derived & MatrixBase::operator= | ( | const DenseBase< OtherDerived > & | other | ) |
Copies other into *this.
Reimplemented from Eigen::DenseBase< Derived >.
EIGEN_STRONG_INLINE Derived & MatrixBase::operator= | ( | const EigenBase< OtherDerived > & | other | ) |
Copies the generic expression other into *this.
The expression must provide a (templated) evalTo(Derived& dst) const function which does the actual job. In practice, this allows any user to write its own special matrix without having to modify MatrixBase
Reimplemented from Eigen::DenseBase< Derived >.
EIGEN_STRONG_INLINE Derived & MatrixBase::operator= | ( | const ReturnByValue< OtherDerived > & | other | ) |
Reimplemented from Eigen::DenseBase< Derived >.
bool Eigen::MatrixBase< Derived >::operator== | ( | const MatrixBase< OtherDerived > & | other | ) | const [inline] |
*this
and other are all exactly equal. Definition at line 287 of file MatrixBase.h.
MatrixBase< Derived >::RealScalar MatrixBase::operatorNorm | ( | ) | const [inline] |
Computes the L2 operator norm.
This function computes the L2 operator norm of a matrix, which is also known as the spectral norm. The norm of a matrix is defined to be
where the maximum is over all vectors and the norm on the right is the Euclidean vector norm. The norm equals the largest singular value, which is the square root of the largest eigenvalue of the positive semi-definite matrix .
The current implementation uses the eigenvalues of , as computed by SelfAdjointView::eigenvalues(), to compute the operator norm of a matrix. The SelfAdjointView class provides a better algorithm for selfadjoint matrices.
Example:
Output:
Definition at line 122 of file MatrixBaseEigenvalues.h.
const PartialPivLU< typename MatrixBase< Derived >::PlainObject > MatrixBase::partialPivLu | ( | ) | const [inline] |
*this
.Definition at line 485 of file PartialPivLU.h.
const MatrixPowerReturnValue< Derived > MatrixBase::pow | ( | const RealScalar & | p | ) | const |
Definition at line 503 of file MatrixPower.h.
RealReturnType Eigen::MatrixBase< Derived >::real | ( | ) | const [inline] |
*this
.Definition at line 111 of file MatrixBase.h.
NonConstRealReturnType Eigen::MatrixBase< Derived >::real | ( | ) | [inline] |
*this
.Definition at line 167 of file MatrixBase.h.
MatrixBase< Derived >::template SelfAdjointViewReturnType< UpLo >::Type MatrixBase::selfadjointView | ( | ) |
Definition at line 307 of file SelfAdjointView.h.
MatrixBase< Derived >::template ConstSelfAdjointViewReturnType< UpLo >::Type MatrixBase::selfadjointView | ( | ) | const |
Definition at line 299 of file SelfAdjointView.h.
EIGEN_STRONG_INLINE Derived & MatrixBase::setIdentity | ( | ) |
Writes the identity expression (not necessarily square) into *this.
Example:
Output:
Definition at line 772 of file CwiseNullaryOp.h.
EIGEN_STRONG_INLINE Derived & MatrixBase::setIdentity | ( | Index | nbRows, |
Index | nbCols | ||
) |
Resizes to the given size, and writes the identity expression (not necessarily square) into *this.
nbRows | the new number of rows |
nbCols | the new number of columns |
Example:
Output:
Definition at line 788 of file CwiseNullaryOp.h.
const MatrixFunctionReturnValue< Derived > MatrixBase::sin | ( | ) | const |
Definition at line 558 of file MatrixFunction.h.
const MatrixFunctionReturnValue< Derived > MatrixBase::sinh | ( | ) | const |
Definition at line 574 of file MatrixFunction.h.
const SparseView< Derived > MatrixBase::sparseView | ( | const Scalar & | m_reference = Scalar(0) , |
const typename NumTraits< Scalar >::Real & | m_epsilon = NumTraits<Scalar>::dummy_precision() |
||
) | const |
Definition at line 91 of file SparseView.h.
const MatrixSquareRootReturnValue< Derived > MatrixBase::sqrt | ( | ) | const |
Definition at line 458 of file MatrixSquareRoot.h.
EIGEN_STRONG_INLINE NumTraits< typename internal::traits< Derived >::Scalar >::Real MatrixBase::squaredNorm | ( | ) | const |
*this
, and for matrices the Frobenius norm. In both cases, it consists in the sum of the square of all the matrix entries. For vectors, this is also equals to the dot product of *this
with itself.NumTraits< typename internal::traits< Derived >::Scalar >::Real MatrixBase::stableNorm | ( | ) | const [inline] |
*this
avoiding underflow and overflow. This version use a blockwise two passes algorithm: 1 - find the absolute largest coefficient s
2 - compute in a standard wayFor architecture/scalar types supporting vectorization, this version is faster than blueNorm(). Otherwise the blueNorm() is much faster.
Definition at line 153 of file StableNorm.h.
EIGEN_STRONG_INLINE internal::traits< Derived >::Scalar MatrixBase::trace | ( | ) | const |
*this
, i.e. the sum of the coefficients on the main diagonal.*this
can be any matrix, not necessarily square.
Reimplemented from Eigen::DenseBase< Derived >.
MatrixBase< Derived >::template TriangularViewReturnType< Mode >::Type MatrixBase::triangularView | ( | ) |
The parameter Mode can have the following values: Upper
, StrictlyUpper
, UnitUpper
, Lower
, StrictlyLower
, UnitLower
.
Example:
Output:
Definition at line 771 of file TriangularMatrix.h.
MatrixBase< Derived >::template ConstTriangularViewReturnType< Mode >::Type MatrixBase::triangularView | ( | ) | const |
This is the const version of MatrixBase::triangularView()
Definition at line 780 of file TriangularMatrix.h.
const CwiseUnaryOp<CustomUnaryOp, const Derived> Eigen::MatrixBase< Derived >::unaryExpr | ( | const CustomUnaryOp & | func = CustomUnaryOp() | ) | const [inline] |
Apply a unary operator coefficient-wise.
[in] | func | Functor implementing the unary operator |
CustomUnaryOp | Type of func |
The function ptr_fun()
from the C++ standard library can be used to make functors out of normal functions.
Example:
Output:
Genuine functors allow for more possibilities, for instance it may contain a state.
Example:
Output:
Definition at line 140 of file MatrixBase.h.
const CwiseUnaryView<CustomViewOp, const Derived> Eigen::MatrixBase< Derived >::unaryViewExpr | ( | const CustomViewOp & | func = CustomViewOp() | ) | const [inline] |
The template parameter CustomUnaryOp is the type of the functor of the custom unary operator.
Example:
Output:
Definition at line 158 of file MatrixBase.h.
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType MatrixBase::Unit | ( | Index | newSize, |
Index | i | ||
) | [static] |
Definition at line 801 of file CwiseNullaryOp.h.
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType MatrixBase::Unit | ( | Index | i | ) | [static] |
This variant is for fixed-size vector only.
Definition at line 816 of file CwiseNullaryOp.h.
MatrixBase< Derived >::PlainObject MatrixBase::unitOrthogonal | ( | void | ) | const |
*this
The size of *this
must be at least 2. If the size is exactly 2, then the returned vector is a counter clock wise rotation of *this
, i.e., (-y,x).normalized().
Definition at line 210 of file OrthoMethods.h.
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType MatrixBase::UnitW | ( | ) | [static] |
Definition at line 859 of file CwiseNullaryOp.h.
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType MatrixBase::UnitX | ( | ) | [static] |
Definition at line 829 of file CwiseNullaryOp.h.
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType MatrixBase::UnitY | ( | ) | [static] |
Definition at line 839 of file CwiseNullaryOp.h.
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType MatrixBase::UnitZ | ( | ) | [static] |
Definition at line 849 of file CwiseNullaryOp.h.
const ScalarMultipleReturnType operator* | ( | const Scalar & | scalar, |
const StorageBaseType & | matrix | ||
) | [friend] |
Definition at line 77 of file MatrixBase.h.
const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const Derived> operator* | ( | const std::complex< Scalar > & | scalar, |
const StorageBaseType & | matrix | ||
) | [friend] |
Definition at line 81 of file MatrixBase.h.