►CBFL::BackwardFilter< StateVar > | Virtual Baseclass representing all bayesian backward filters |
CBFL::ParticleSmoother< StateVar > | Class representing a particle backward filter |
►CBFL::BackwardFilter< MatrixWrapper::ColumnVector > | |
CBFL::RauchTungStriebel | Class representing all Rauch-Tung-Striebel backward filters |
►Cbinary_function | |
CBFL::matrix_i_j_constructor | |
CBFL::matrix_index | |
CBFL::MatrixAssignChecker< T > | |
CBFL::MatrixIndexChecker< T > | |
CBFL::rvector_index | |
CBFL::vector_index | |
CBFL::VectorAssignChecker< T > | |
CBFL::WeightedSample_ctor< T > | |
CMatrixWrapper::ColumnVector_Wrapper | Class ColumnVectorWrapper |
CBFL::MatrixWrapper::ColumnVector_Wrapper | Class ColumnVectorWrapper |
►CBFL::Filter< StateVar, MeasVar > | Abstract class representing an interface for Bayesian Filters |
►CBFL::MixtureParticleFilter< StateVar, MeasVar > | Virtual Class representing all Mixture particle filters |
CBFL::MixtureBootstrapFilter< StateVar, MeasVar > | Particular mixture particle filter : Proposal PDF = SystemPDF |
►CBFL::ParticleFilter< StateVar, MeasVar > | Virtual Class representing all particle filters |
CBFL::ASIRFilter< StateVar, MeasVar > | ASIR: Auxiliary Particle Filter |
CBFL::BootstrapFilter< StateVar, MeasVar > | Particular particle filter : Proposal PDF = SystemPDF |
CBFL::Optimalimportancefilter< StateVar, MeasVar > | Particular particle filter: Proposal PDF = Optimal Importance function |
►CBFL::Filter< ColumnVector, ColumnVector > | |
►CBFL::ParticleFilter< ColumnVector, ColumnVector > | |
CBFL::EKParticleFilter | Particle filter using EKF for proposal step |
►CBFL::Filter< int, MeasVar > | |
CBFL::HistogramFilter< MeasVar > | Class representing the histogram filter |
►CBFL::Filter< MatrixWrapper::ColumnVector, MatrixWrapper::ColumnVector > | |
►CBFL::KalmanFilter | Class representing the family of all Kalman Filters (EKF, IEKF, ...) |
CBFL::ExtendedKalmanFilter | |
CBFL::IteratedExtendedKalmanFilter | |
CBFL::NonminimalKalmanFilter | |
CBFL::SRIteratedExtendedKalmanFilter | |
CBFL::InnovationCheck | Class implementing an innovationCheck used in IEKF |
CMatrixWrapper::Matrix_Wrapper | Class Matrixwrapper |
CBFL::MatrixWrapper::Matrix_Wrapper | Class Matrixwrapper |
CBFL::KalmanFilter::MeasUpdateVariables | |
CBFL::ExtendedKalmanFilter::MeasUpdateVariablesExt | |
CBFL::IteratedExtendedKalmanFilter::MeasUpdateVariablesIExt | |
CBFL::MeasurementModel< MeasVar, StateVar > | |
►CBFL::MeasurementModel< MatrixWrapper::ColumnVector, MatrixWrapper::ColumnVector > | |
►CBFL::AnalyticMeasurementModelGaussianUncertainty | |
►CBFL::LinearAnalyticMeasurementModelGaussianUncertainty | Class for linear analytic measurementmodels with additive gaussian noise |
CBFL::LinearAnalyticMeasurementModelGaussianUncertainty_Implicit | Class for linear analytic measurementmodels with additive gaussian noise |
CBFL::NonLinearAnalyticMeasurementModelGaussianUncertainty_Ginac | Class for nonlinear analytic measurementmodels with additive gaussian noise |
CBFL::MobileRobot | This is a class simulating a mobile robot |
CMyType | |
►CBFL::BFL::Pdf< T > | Class PDF: Virtual Base class representing Probability Density Functions |
CBFL::BFL::MCPdf< T > | Monte Carlo Pdf: Sample based implementation of Pdf |
CBFL::BFL::Mixture< T > | Class representing a mixture of PDFs, the mixture can contain different |
CBFL::MCPdf< T > | Monte Carlo Pdf: Sample based implementation of Pdf |
CBFL::Mixture< T > | Class representing a mixture of PDFs, the mixture can contain different |
CBFL::ConditionalPdf< T, T > | |
CBFL::Pdf< T > | Class PDF: Virtual Base class representing Probability Density Functions |
►CBFL::BFL::Pdf< ColumnVector > | |
CBFL::ConditionalPdf< ColumnVector, ColumnVector > | |
►CBFL::BFL::Pdf< int > | |
CBFL::BFL::DiscretePdf | Class representing a PDF on a discrete variable |
CBFL::DiscretePdf | Class representing a PDF on a discrete variable |
►CBFL::ConditionalPdf< int, int > | |
CBFL::DiscreteConditionalPdf | Abstract Class representing all FULLY Discrete Conditional PDF's |
►CBFL::BFL::Pdf< MatrixWrapper::ColumnVector > | |
CBFL::Gaussian | Class representing Gaussian (or normal density) |
CBFL::Uniform | Class representing uniform density |
►CBFL::ConditionalPdf< MatrixWrapper::ColumnVector, int > | |
CBFL::ConditionalUniformMeasPdf1d | |
►CBFL::ConditionalPdf< MatrixWrapper::ColumnVector, MatrixWrapper::ColumnVector > | |
►CBFL::ConditionalGaussian | Abstract Class representing all Conditional gaussians |
►CBFL::AnalyticConditionalGaussian | Abstract Class representing all FULL Analytical Conditional gaussians |
►CBFL::AnalyticConditionalGaussianAdditiveNoise | Abstract Class representing all full Analytical Conditional gaussians with Additive Gaussian Noise |
CBFL::LinearAnalyticConditionalGaussian | Linear Conditional Gaussian |
CBFL::NonLinearAnalyticConditionalGaussian_Ginac | Conditional Gaussian for an analytic nonlinear system using Ginac: |
CBFL::NonLinearAnalyticConditionalGaussianMobile | Non Linear Conditional Gaussian |
CBFL::NonLinearAnalyticConditionalGaussianMobile | Non Linear Conditional Gaussian |
►CBFL::FilterProposalDensity | Proposal Density for non-linear systems with additive Gaussian Noise (using a (analytic) Filter) |
CBFL::EKFProposalDensity | Proposal Density for non-linear systems with additive Gaussian Noise (using a EKF Filter) |
CBFL::OptimalImportanceDensity | Optimal importance density for Nonlinear Gaussian SS Models |
CBFL::ConditionalGaussianAdditiveNoise | Abstract Class representing all Conditional Gaussians with additive gaussian noise |
CBFL::NonlinearMeasurementPdf | Non Linear Conditional Gaussian |
CBFL::NonlinearSystemPdf | Non Linear Conditional Gaussian |
►CBFL::BFL::Pdf< MeasVar > | |
CBFL::ConditionalPdf< MeasVar, StateVar > | |
►CBFL::BFL::Pdf< StateVar > | |
CBFL::ConditionalPdf< StateVar, StateVar > | |
►CBFL::BFL::Pdf< Var > | |
CBFL::ConditionalPdf< Var, CondArg > | Abstract Class representing conditional Pdfs P(x | ...) |
CBFL::BFL::Probability | Class representing a probability (a double between 0 and 1) |
CBFL::Probability | Class representing a probability (a double between 0 and 1) |
CMatrixWrapper::RowVector_Wrapper | Class RowVectorWrapper |
CBFL::MatrixWrapper::RowVector_Wrapper | Class RowVectorWrapper |
CBFL::Sample< T > | |
►CBFL::BFL::Sample< T > | |
CBFL::BFL::WeightedSample< T > | |
CBFL::WeightedSample< T > | |
►CBFL::BFL::Sample< ColumnVector > | |
CBFL::BFL::WeightedSample< ColumnVector > | |
CBFL::WeightedSample< ColumnVector > | |
CBFL::Sample< ColumnVector > | |
CBFL::Sample< double > | |
CBFL::Sample< int > | |
►CBFL::BFL::Sample< StateVar > | |
CBFL::BFL::WeightedSample< StateVar > | |
CMatrixWrapper::SymmetricMatrix_Wrapper | Class SymmetricMatrixWrapper |
CBFL::MatrixWrapper::SymmetricMatrix_Wrapper | Class SymmetricMatrixWrapper |
CBFL::SystemModel< T > | |
►CBFL::SystemModel< int > | |
CBFL::DiscreteSystemModel | Class for discrete System Models |
►CBFL::SystemModel< MatrixWrapper::ColumnVector > | |
►CBFL::AnalyticSystemModelGaussianUncertainty | Class for analytic system models with additive Gauss. uncertainty |
CBFL::LinearAnalyticSystemModelGaussianUncertainty | Class for linear analytic systemmodels with additive gaussian noise |
CBFL::NonLinearAnalyticSystemModelGaussianUncertainty_Ginac | Class for nonlinear analytic systemmodels with additive gaussian noise |
►CTemplateContainerTypeInfo | |
CBFL::MatrixTypeInfo | |
CBFL::RVectorTypeInfo | |
CBFL::SymmetricMatrixTypeInfo | |
CBFL::VectorTypeInfo | |
►CTemplateTypeInfo | |
CBFL::ProbabilityTypeInfo | |
CBFL::SampleTypeInfo< T > | |
CBFL::WeightedSampleTypeInfo< T > | |
►CTestFixture | |
CBFL::EKFTest | |
CComplete_FilterTest | |
CMatrixwrapperTest | |
CModelTest | |
CModelTestGinac | |
CPdfTest | |
CSampleTest | |
CSmootherTest | |
►CToolkitPlugin | |
CBFL::bflToolkitPlugin | |
►Cunary_function | |
CBFL::get_size | |
CBFL::Probability_ctor | |
CBFL::rget_size | |
CBFL::rvector_index_constructor | |
CBFL::Sample_ctor< T > | |
CBFL::symmetricMatrix_index_constructor | |
CBFL::vector_index_constructor | |