Abstract Class representing all full Analytical Conditional gaussians with Additive Gaussian Noise. More...
#include <analyticconditionalgaussian_additivenoise.h>
Public Member Functions | |
const MatrixWrapper::ColumnVector & | AdditiveNoiseMuGet () const |
Get the mean Value of the Additive Gaussian uncertainty. More... | |
void | AdditiveNoiseMuSet (const MatrixWrapper::ColumnVector &mu) |
Set the mean Value of the Additive Gaussian uncertainty. More... | |
const MatrixWrapper::SymmetricMatrix & | AdditiveNoiseSigmaGet () const |
Get the covariance matrix of the Additive Gaussian uncertainty. More... | |
void | AdditiveNoiseSigmaSet (const MatrixWrapper::SymmetricMatrix &sigma) |
Set the covariance of the Additive Gaussian uncertainty. More... | |
AnalyticConditionalGaussianAdditiveNoise (const Gaussian &gaus, int num_conditional_arguments=1) | |
Constructor. More... | |
AnalyticConditionalGaussianAdditiveNoise (int dim=0, int num_conditional_arguments=0) | |
Constructor 2, Gaussian not yet known. More... | |
virtual MatrixWrapper::SymmetricMatrix | CovarianceGet () const |
Get the Covariance Matrix E[(x - E[x])^2] of the Analytic pdf. More... | |
virtual | ~AnalyticConditionalGaussianAdditiveNoise () |
Destructor. More... | |
Public Member Functions inherited from BFL::AnalyticConditionalGaussian | |
AnalyticConditionalGaussian (int dim=0, int num_conditional_arguments=0) | |
Constructor. More... | |
virtual MatrixWrapper::Matrix | dfGet (unsigned int i) const |
returns derivative from function to n-th conditional variable More... | |
virtual | ~AnalyticConditionalGaussian () |
Destructor. More... | |
Public Member Functions inherited from BFL::ConditionalGaussian | |
virtual ConditionalGaussian * | Clone () const |
Clone function. More... | |
ConditionalGaussian (int dim=0, int num_conditional_arguments=0) | |
Constructor. More... | |
virtual Probability | ProbabilityGet (const MatrixWrapper::ColumnVector &input) const |
Get the probability of a certain argument. More... | |
virtual bool | SampleFrom (Sample< MatrixWrapper::ColumnVector > &sample, int method=DEFAULT, void *args=NULL) const |
virtual bool | SampleFrom (std::vector< Sample< MatrixWrapper::ColumnVector > > &samples, const int num_samples, int method=DEFAULT, void *args=NULL) const |
virtual | ~ConditionalGaussian () |
Destructor. More... | |
Public Member Functions inherited from BFL::ConditionalPdf< MatrixWrapper::ColumnVector, MatrixWrapper::ColumnVector > | |
const MatrixWrapper::ColumnVector & | ConditionalArgumentGet (unsigned int n_argument) const |
Get the n-th argument of the list. More... | |
virtual void | ConditionalArgumentSet (unsigned int n_argument, const MatrixWrapper::ColumnVector &argument) |
Set the n-th argument of the list. More... | |
const std::vector< MatrixWrapper::ColumnVector > & | ConditionalArgumentsGet () const |
Get the whole list of conditional arguments. More... | |
virtual void | ConditionalArgumentsSet (std::vector< MatrixWrapper::ColumnVector > ConditionalArguments) |
Set the whole list of conditional arguments. More... | |
ConditionalPdf (int dimension=0, unsigned int num_conditional_arguments=0) | |
Constructor. More... | |
unsigned int | NumConditionalArgumentsGet () const |
Get the Number of conditional arguments. More... | |
virtual void | NumConditionalArgumentsSet (unsigned int numconditionalarguments) |
Set the Number of conditional arguments. More... | |
virtual | ~ConditionalPdf () |
Destructor. More... | |
Public Member Functions inherited from BFL::BFL::Pdf< MatrixWrapper::ColumnVector > | |
unsigned int | DimensionGet () const |
Get the dimension of the argument. More... | |
virtual void | DimensionSet (unsigned int dim) |
Set the dimension of the argument. More... | |
virtual MatrixWrapper::ColumnVector | ExpectedValueGet () const |
Get the expected value E[x] of the pdf. More... | |
Pdf (unsigned int dimension=0) | |
Constructor. More... | |
virtual bool | SampleFrom (vector< Sample< MatrixWrapper::ColumnVector > > &list_samples, const unsigned int num_samples, int method=DEFAULT, void *args=NULL) const |
Draw multiple samples from the Pdf (overloaded) More... | |
virtual bool | SampleFrom (Sample< MatrixWrapper::ColumnVector > &one_sample, int method=DEFAULT, void *args=NULL) const |
Draw 1 sample from the Pdf: More... | |
virtual | ~Pdf () |
Destructor. More... | |
Protected Attributes | |
MatrixWrapper::ColumnVector | _additiveNoise_Mu |
additive noise expected value More... | |
MatrixWrapper::SymmetricMatrix | _additiveNoise_Sigma |
additive noise covariance More... | |
Protected Attributes inherited from BFL::ConditionalGaussian | |
ColumnVector | _diff |
Matrix | _Low_triangle |
ColumnVector | _Mu |
ColumnVector | _samples |
ColumnVector | _SampleValue |
Abstract Class representing all full Analytical Conditional gaussians with Additive Gaussian Noise.
This class represents all Pdf's of the type
where
and
and
Definition at line 37 of file analyticconditionalgaussian_additivenoise.h.
BFL::AnalyticConditionalGaussianAdditiveNoise::AnalyticConditionalGaussianAdditiveNoise | ( | const Gaussian & | gaus, |
int | num_conditional_arguments = 1 |
||
) |
Constructor.
gaus | Gaussian representing the additive uncertainty |
num_conditional_arguments | The number of conditional arguments. |
BFL::AnalyticConditionalGaussianAdditiveNoise::AnalyticConditionalGaussianAdditiveNoise | ( | int | dim = 0 , |
int | num_conditional_arguments = 0 |
||
) |
Constructor 2, Gaussian not yet known.
dim | Dimension of state |
num_conditional_arguments | The number of conditional arguments. |
|
virtual |
Destructor.
const MatrixWrapper::ColumnVector& BFL::AnalyticConditionalGaussianAdditiveNoise::AdditiveNoiseMuGet | ( | ) | const |
void BFL::AnalyticConditionalGaussianAdditiveNoise::AdditiveNoiseMuSet | ( | const MatrixWrapper::ColumnVector & | mu | ) |
const MatrixWrapper::SymmetricMatrix& BFL::AnalyticConditionalGaussianAdditiveNoise::AdditiveNoiseSigmaGet | ( | ) | const |
void BFL::AnalyticConditionalGaussianAdditiveNoise::AdditiveNoiseSigmaSet | ( | const MatrixWrapper::SymmetricMatrix & | sigma | ) |
|
virtual |
Get the Covariance Matrix E[(x - E[x])^2] of the Analytic pdf.
Get first order statistic (Covariance) of this AnalyticPdf
Reimplemented from BFL::BFL::Pdf< MatrixWrapper::ColumnVector >.
Reimplemented in BFL::NonLinearAnalyticConditionalGaussian_Ginac.
|
protected |
additive noise expected value
Definition at line 92 of file analyticconditionalgaussian_additivenoise.h.
|
protected |
additive noise covariance
Definition at line 95 of file analyticconditionalgaussian_additivenoise.h.