solver-osqp.cpp
Go to the documentation of this file.
1 //
2 // Copyright (c) 2022 INRIA
3 //
4 // This file is part of tsid
5 // tsid is free software: you can redistribute it
6 // and/or modify it under the terms of the GNU Lesser General Public
7 // License as published by the Free Software Foundation, either version
8 // 3 of the License, or (at your option) any later version.
9 // tsid is distributed in the hope that it will be
10 // useful, but WITHOUT ANY WARRANTY; without even the implied warranty
11 // of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 // General Lesser Public License for more details. You should have
13 // received a copy of the GNU Lesser General Public License along with
14 // tsid If not, see
15 // <http://www.gnu.org/licenses/>.
16 //
17 
19 #include "tsid/math/utils.hpp"
21 
22 namespace tsid {
23 namespace solvers {
24 
25 using namespace math;
26 SolverOSQP::SolverOSQP(const std::string& name)
27  : SolverHQPBase(name),
28  m_hessian_regularization(DEFAULT_HESSIAN_REGULARIZATION) {
29  m_n = 0;
30  m_neq = 0;
31  m_nin = 0;
32  m_rho = 0.1;
33  m_sigma = 1e-6;
34  m_alpha = 1.6;
35  m_epsAbs = 1e-5;
36  m_epsRel = 0.;
37  m_isVerbose = false;
38  m_isDataInitialized = false;
39 }
40 
42  : SolverHQPBase(other.name()),
44  m_n = other.m_n;
45  m_neq = other.m_neq;
46  m_nin = other.m_nin;
47  m_rho = other.m_rho;
48  m_sigma = other.m_sigma;
49  m_alpha = other.m_alpha;
50  m_epsAbs = other.m_epsAbs;
51  m_epsRel = other.m_epsRel;
52  m_isVerbose = other.m_isVerbose;
54 }
55 
56 void SolverOSQP::sendMsg(const std::string& s) {
57  std::cout << "[SolverOSQP." << m_name << "] " << s << std::endl;
58 }
59 
60 void SolverOSQP::resize(unsigned int n, unsigned int neq, unsigned int nin) {
61  const bool resizeVar = n != m_n;
62  const bool resizeEq = (resizeVar || neq != m_neq);
63  const bool resizeIn = (resizeVar || nin != m_nin);
64 
65  if (resizeIn || resizeEq) {
66  m_qpData.CI.resize(nin + neq, n);
67  m_qpData.ci_lb.resize(nin + neq);
68  m_qpData.ci_ub.resize(nin + neq);
69  }
70  if (resizeVar) {
71 #ifndef NDEBUG
72  sendMsg("Resizing Hessian from " + toString(m_n) + " to " + toString(n));
73 #endif
74  m_qpData.H.resize(n, n);
75  m_qpData.g.resize(n);
76  m_output.x.resize(n);
77  }
78 
79  m_n = n;
80  m_neq = neq;
81  m_nin = nin;
82 
83  if (resizeVar || resizeEq || resizeIn) {
84  if (m_solver.isInitialized()) {
85  m_solver.clearSolverVariables();
86  m_solver.data()->clearHessianMatrix();
87  m_solver.data()->clearLinearConstraintsMatrix();
88  m_solver.clearSolver();
89  }
90  m_solver.data()->setNumberOfVariables(int(m_n));
91  m_solver.data()->setNumberOfConstraints(int(m_neq + m_nin));
92 
93  m_isDataInitialized = false;
94 #ifndef NDEBUG
95  setVerbose(true);
96 #endif
100  setRho(m_rho);
104  }
105 }
106 
107 void SolverOSQP::retrieveQPData(const HQPData& problemData,
108  const bool hessianRegularization) {
109  if (problemData.size() > 2) {
111  false, "Solver not implemented for more than 2 hierarchical levels.");
112  }
113 
114  // Compute the constraint matrix sizes
115  unsigned int neq = 0, nin = 0;
116  const ConstraintLevel& cl0 = problemData[0];
117 
118  if (cl0.size() > 0) {
119  const unsigned int n = cl0[0].second->cols();
120  for (ConstraintLevel::const_iterator it = cl0.begin(); it != cl0.end();
121  it++) {
122  auto constr = it->second;
123  assert(n == constr->cols());
124  if (constr->isEquality())
125  neq += constr->rows();
126  else
127  nin += constr->rows();
128  }
129  // If necessary, resize the constraint matrices
130  resize(n, neq, nin);
131 
132  unsigned int i_in = 0;
133  for (ConstraintLevel::const_iterator it = cl0.begin(); it != cl0.end();
134  it++) {
135  auto constr = it->second;
136  if (constr->isEquality()) {
137  m_qpData.CI.middleRows(i_in, constr->rows()) = constr->matrix();
138  m_qpData.ci_lb.segment(i_in, constr->rows()) = constr->vector();
139  m_qpData.ci_ub.segment(i_in, constr->rows()) = constr->vector();
140  i_in += constr->rows();
141  } else if (constr->isInequality()) {
142  m_qpData.CI.middleRows(i_in, constr->rows()) = constr->matrix();
143  m_qpData.ci_lb.segment(i_in, constr->rows()) = constr->lowerBound();
144  m_qpData.ci_ub.segment(i_in, constr->rows()) = constr->upperBound();
145  i_in += constr->rows();
146  } else if (constr->isBound()) {
147  m_qpData.CI.middleRows(i_in, constr->rows()).setIdentity();
148  m_qpData.ci_lb.segment(i_in, constr->rows()) = constr->lowerBound();
149  m_qpData.ci_ub.segment(i_in, constr->rows()) = constr->upperBound();
150  i_in += constr->rows();
151  }
152  }
153  } else {
154  resize(m_n, neq, nin);
155  }
156 
158 
159  // Compute the cost
160  if (problemData.size() > 1) {
161  const ConstraintLevel& cl1 = problemData[1];
162  m_qpData.H.setZero();
163  m_qpData.g.setZero();
164 
165  for (ConstraintLevel::const_iterator it = cl1.begin(); it != cl1.end();
166  it++) {
167  const double& w = it->first;
168  auto constr = it->second;
169  if (!constr->isEquality())
171  false, "Inequalities in the cost function are not implemented yet");
172 
174  m_qpData.H.noalias() +=
175  w * constr->matrix().transpose() * constr->matrix();
177 
178  m_qpData.g.noalias() -=
179  w * constr->matrix().transpose() * constr->vector();
180  }
181 
182  if (hessianRegularization) {
184  m_qpData.H.diagonal().array() += m_hessian_regularization;
185  }
186  }
187 }
188 
189 const HQPOutput& SolverOSQP::solve(const HQPData& problemData) {
190  typedef Eigen::SparseMatrix<double> SpMat;
191 
192  SolverOSQP::retrieveQPData(problemData);
193 
194  START_PROFILER_OSQP("PROFILE_OSQP_SOLUTION");
195  // min 0.5 * x G x + g0 x
196  // s.t.
197  // lb <= CI x <= ub (including equality constraints)
198 
200 
201  if (!m_isDataInitialized) {
202  m_solver.data()->setHessianMatrix(
203  static_cast<SpMat>(m_qpData.H.sparseView()));
204  m_solver.data()->setGradient(m_qpData.g);
205  m_solver.data()->setLinearConstraintsMatrix(
206  static_cast<SpMat>(m_qpData.CI.sparseView()));
207  m_solver.data()->setBounds(m_qpData.ci_lb, m_qpData.ci_ub);
208  m_isDataInitialized = true;
209  } else {
210  m_solver.updateHessianMatrix(static_cast<SpMat>(m_qpData.H.sparseView()));
211  m_solver.updateGradient(m_qpData.g);
212  m_solver.updateLinearConstraintsMatrix(
213  static_cast<SpMat>(m_qpData.CI.sparseView()));
214  m_solver.updateBounds(m_qpData.ci_lb, m_qpData.ci_ub);
215  }
216 
217  if (!m_solver.isInitialized()) {
218  m_solver.initSolver();
219  }
220  m_solver.solveProblem();
221  STOP_PROFILER_OSQP("PROFILE_OSQP_SOLUTION");
222 
223  OsqpEigen::Status status = m_solver.getStatus();
224 
225  if (status == OsqpEigen::Status::Solved) {
226  m_output.x = m_solver.getSolution();
228  m_output.lambda = m_solver.getDualSolution();
229 
230 #ifndef NDEBUG
231  const Vector& x = m_solver.getSolution();
232 
233  const ConstraintLevel& cl0 = problemData[0];
234 
235  if (cl0.size() > 0) {
236  for (ConstraintLevel::const_iterator it = cl0.begin(); it != cl0.end();
237  it++) {
238  auto constr = it->second;
239  if (constr->checkConstraint(x) == false) {
240  // m_output.status = HQP_STATUS_ERROR;
241  if (constr->isEquality()) {
242  sendMsg("Equality " + constr->name() + " violated: " +
243  toString((constr->matrix() * x - constr->vector()).norm()));
244  } else if (constr->isInequality()) {
245  sendMsg(
246  "Inequality " + constr->name() + " violated: " +
247  toString(
248  (constr->matrix() * x - constr->lowerBound()).minCoeff()) +
249  "\n" +
250  toString(
251  (constr->upperBound() - constr->matrix() * x).minCoeff()));
252  } else if (constr->isBound()) {
253  sendMsg("Bound " + constr->name() + " violated: " +
254  toString((x - constr->lowerBound()).minCoeff()) + "\n" +
255  toString((constr->upperBound() - x).minCoeff()));
256  }
257  }
258  }
259  }
260 #endif
261  } else if (status == OsqpEigen::Status::PrimalInfeasible)
263  else if (status == OsqpEigen::Status::MaxIterReached)
265  else if (status == OsqpEigen::Status::DualInfeasible)
267  else if (status == OsqpEigen::Status::SolvedInaccurate)
269  else
271 
272  return m_output;
273 }
274 
275 double SolverOSQP::getObjectiveValue() { return m_solver.getObjValue(); }
276 
277 bool SolverOSQP::setMaximumIterations(unsigned int maxIter) {
279  m_solver.settings()->setMaxIteration(int(maxIter));
280  return true;
281 }
282 
283 void SolverOSQP::setSigma(double sigma) {
284  m_sigma = sigma;
285  m_solver.settings()->setSigma(m_sigma);
286 }
288  m_alpha = alpha;
289  m_solver.settings()->setAlpha(m_alpha);
290 }
291 
292 void SolverOSQP::setRho(double rho) {
293  m_rho = rho;
294  m_solver.settings()->setRho(m_rho);
295 }
296 void SolverOSQP::setEpsilonAbsolute(double epsAbs) {
297  m_epsAbs = epsAbs;
298  m_solver.settings()->setAbsoluteTolerance(m_epsAbs);
299 }
300 void SolverOSQP::setEpsilonRelative(double epsRel) {
301  m_epsRel = epsRel;
302  m_solver.settings()->setRelativeTolerance(m_epsRel);
303 }
304 void SolverOSQP::setVerbose(bool isVerbose) {
305  m_isVerbose = isVerbose;
306  m_solver.settings()->setVerbosity(m_isVerbose);
307 }
308 } // namespace solvers
309 } // namespace tsid
Vector x
solver status
HQP_STATUS_UNKNOWN
Definition: solvers/fwd.hpp:62
HQP_STATUS_OPTIMAL
Definition: solvers/fwd.hpp:63
void setAlpha(double alpha)
Vec3f n
QPDataTpl< double > m_qpData
number of variables
std::string toString(const T &v)
Definition: math/utils.hpp:39
virtual const std::string & name() const
#define DEFAULT_HESSIAN_REGULARIZATION
Definition: solvers/fwd.hpp:28
#define EIGEN_MALLOC_ALLOWED
Definition: math/fwd.hpp:27
void setRho(double rho)
const HQPOutput & solve(const HQPData &problemData)
#define EIGEN_MALLOC_NOT_ALLOWED
Definition: math/fwd.hpp:28
void retrieveQPData(const HQPData &problemData, const bool hessianRegularization=false)
void setEpsilonAbsolute(double epsAbs)
#define START_PROFILER_OSQP(x)
HQP_STATUS_MAX_ITER_REACHED
Definition: solvers/fwd.hpp:66
unsigned int m_nin
number of equality constraints
void setSigma(double sigma)
int alpha
Definition: ex_4_conf.py:43
void resize(unsigned int n, unsigned int neq, unsigned int nin)
Definition: solver-osqp.cpp:60
#define STOP_PROFILER_OSQP(x)
void setVerbose(bool isVerbose=false)
virtual bool setMaximumIterations(unsigned int maxIter)
bool setMaximumIterations(unsigned int maxIter)
w
SolverOSQP(const std::string &name)
Definition: solver-osqp.cpp:26
#define PINOCCHIO_CHECK_INPUT_ARGUMENT(...)
unsigned int m_n
number of inequality constraints
HQP_STATUS_INFEASIBLE
Definition: solvers/fwd.hpp:64
Abstract interface for a Quadratic Program (HQP) solver.
void setEpsilonRelative(double epsRel)
void sendMsg(const std::string &s)
Definition: solver-osqp.cpp:56


tsid
Author(s): Andrea Del Prete, Justin Carpentier
autogenerated on Sun Jul 2 2023 02:21:51