75 typedef typename std::shared_ptr<TransformBtwRobotsUnaryFactorEM>
shared_ptr;
84 const double prior_inlier,
const double prior_outlier,
85 const bool flag_bump_up_near_zero_probs =
false,
86 const bool start_with_M_step =
false) :
107 std::cout << s <<
"TransformBtwRobotsUnaryFactorEM(" 108 << keyFormatter(key_) <<
")\n";
109 std::cout <<
"MR between factor keys: " 110 << keyFormatter(keyA_) <<
"," 111 << keyFormatter(keyB_) <<
"\n";
112 measured_.print(
" measured: ");
113 model_inlier_->print(
" noise model inlier: ");
114 model_outlier_->print(
" noise model outlier: ");
115 std::cout <<
"(prior_inlier, prior_outlier_) = (" 116 << prior_inlier_ <<
"," 117 << prior_outlier_ <<
")\n";
123 const This *
t =
dynamic_cast<const This*
> (&
f);
126 return key_ == t->key_ && measured_.
equals(t->measured_) &&
129 prior_outlier_ == t->prior_outlier_ && prior_inlier_ == t->prior_inlier_;
139 throw(
"something is wrong!");
168 return std::shared_ptr<JacobianFactor>();
172 std::vector<Matrix>
A(this->
size());
189 Matrix H_compose, H_between1, H_dummy;
191 T orgA_T_currA = valA_.
at<T>(
keyA_);
192 T orgB_T_currB = valB_.
at<T>(
keyB_);
194 T orgA_T_orgB = x.
at<T>(
key_);
196 T orgA_T_currB = orgA_T_orgB.compose(orgB_T_currB, H_compose, H_dummy);
198 T currA_T_currB_pred = orgA_T_currA.between(orgA_T_currB, H_dummy, H_between1);
202 Vector err = currA_T_currB_msr.localCoordinates(currA_T_currB_pred);
206 double p_inlier = p_inlier_outlier[0];
207 double p_outlier = p_inlier_outlier[1];
209 if (start_with_M_step_){
210 start_with_M_step_ =
false;
216 Vector err_wh_inlier = model_inlier_->whiten(err);
217 Vector err_wh_outlier = model_outlier_->whiten(err);
219 Matrix invCov_inlier = model_inlier_->R().transpose() * model_inlier_->R();
220 Matrix invCov_outlier = model_outlier_->R().transpose() * model_outlier_->R();
223 err_wh_eq.resize(err_wh_inlier.rows()*2);
224 err_wh_eq <<
sqrt(p_inlier) * err_wh_inlier.array() ,
sqrt(p_outlier) * err_wh_outlier.array();
226 Matrix H_unwh = H_compose * H_between1;
230 Matrix H_inlier =
sqrt(p_inlier)*model_inlier_->Whiten(H_unwh);
231 Matrix H_outlier =
sqrt(p_outlier)*model_outlier_->Whiten(H_unwh);
234 (*H)[0].resize(H_aug.rows(),H_aug.cols());
267 Vector err_wh_inlier = model_inlier_->whiten(err);
268 Vector err_wh_outlier = model_outlier_->whiten(err);
270 Matrix invCov_inlier = model_inlier_->R().transpose() * model_inlier_->R();
271 Matrix invCov_outlier = model_outlier_->R().transpose() * model_outlier_->R();
273 double p_inlier = prior_inlier_ *
sqrt(invCov_inlier.norm()) *
exp( -0.5 * err_wh_inlier.dot(err_wh_inlier) );
274 double p_outlier = prior_outlier_ *
sqrt(invCov_outlier.norm()) *
exp( -0.5 * err_wh_outlier.dot(err_wh_outlier) );
276 double sumP = p_inlier + p_outlier;
280 if (flag_bump_up_near_zero_probs_){
283 if (p_inlier < minP || p_outlier < minP){
286 if (p_outlier < minP)
288 sumP = p_inlier + p_outlier;
294 return (
Vector(2) << p_inlier, p_outlier).finished();
300 T orgA_T_currA = valA_.
at<T>(
keyA_);
301 T orgB_T_currB = valB_.
at<T>(
keyB_);
303 T orgA_T_orgB = x.
at<T>(
key_);
305 T orgA_T_currB = orgA_T_orgB.compose(orgB_T_currB);
307 T currA_T_currB_pred = orgA_T_currA.between(orgA_T_currB);
311 return currA_T_currB_msr.localCoordinates(currA_T_currB_pred);
326 return (model_inlier_->R().transpose()*model_inlier_->R()).
inverse();
331 return (model_outlier_->R().transpose()*model_outlier_->R()).
inverse();
339 Keys.push_back(keyA_);
340 Keys.push_back(keyB_);
342 Matrix cov1 = joint_marginal12(keyA_, keyA_);
343 Matrix cov2 = joint_marginal12(keyB_, keyB_);
344 Matrix cov12 = joint_marginal12(keyA_, keyB_);
382 p1.between(p2, H1, H2);
385 H.resize(H1.rows(), H1.rows()+H2.rows());
389 joint_cov.resize(cov1.rows()+cov2.rows(), cov1.cols()+cov2.cols());
390 joint_cov << cov1, cov12,
391 cov12.transpose(), cov2;
393 Matrix cov_state = H*joint_cov*H.transpose();
398 Matrix covRinlier = (model_inlier_->R().transpose()*model_inlier_->R()).
inverse();
401 Matrix covRoutlier = (model_outlier_->R().transpose()*model_outlier_->R()).
inverse();
411 size_t dim()
const override {
412 return model_inlier_->R().rows() + model_inlier_->R().cols();
417 #ifdef GTSAM_ENABLE_BOOST_SERIALIZATION 419 friend class boost::serialization::access;
420 template<
class ARCHIVE>
421 void serialize(ARCHIVE & ar,
const unsigned int ) {
422 ar & boost::serialization::make_nvp(
"NonlinearFactor",
423 boost::serialization::base_object<Base>(*
this));
430 template<
class VALUE>
432 public Testable<TransformBtwRobotsUnaryFactorEM<VALUE> > {
const gtsam::Symbol key('X', 0)
std::vector< Matrix > * OptionalMatrixVecType
static shared_ptr Covariance(const Matrix &covariance, bool smart=true)
Concept check for values that can be used in unit tests.
Factor Graph consisting of non-linear factors.
std::string serialize(const T &input)
serializes to a string
const ValueType at(Key j) const
A factor with a quadratic error function - a Gaussian.
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy y set format x g set format y g set format x2 g set format y2 g set format z g set angles radians set nogrid set key title set key left top Right noreverse box linetype linewidth samplen spacing width set nolabel set noarrow set nologscale set logscale x set set pointsize set encoding default set nopolar set noparametric set set set set surface set nocontour set clabel set mapping cartesian set nohidden3d set cntrparam order set cntrparam linear set cntrparam levels auto set cntrparam points set size set set xzeroaxis lt lw set x2zeroaxis lt lw set yzeroaxis lt lw set y2zeroaxis lt lw set tics in set ticslevel set tics set mxtics default set mytics default set mx2tics default set my2tics default set xtics border mirror norotate autofreq set ytics border mirror norotate autofreq set ztics border nomirror norotate autofreq set nox2tics set noy2tics set timestamp bottom norotate set rrange [*:*] noreverse nowriteback set trange [*:*] noreverse nowriteback set urange [*:*] noreverse nowriteback set vrange [*:*] noreverse nowriteback set xlabel matrix size set x2label set timefmt d m y n H
#define GTSAM_CONCEPT_TESTABLE_TYPE(T)
NonlinearFactorGraph graph
static const KeyFormatter DefaultKeyFormatter
EIGEN_DEVICE_FUNC const InverseReturnType inverse() const
static constexpr bool debug
static shared_ptr Create(size_t dim)
EIGEN_DEVICE_FUNC const ExpReturnType exp() const
virtual bool equals(const NonlinearFactor &f, double tol=1e-9) const
JointMarginal jointMarginalCovariance(const KeyVector &variables) const
Matrix stack(size_t nrMatrices,...)
Point2(* f)(const Point3 &, OptionalJacobian< 2, 3 >)
Array< double, 1, 3 > e(1./3., 0.5, 2.)
std::function< std::string(Key)> KeyFormatter
Typedef for a function to format a key, i.e. to convert it to a string.
Base class and basic functions for Lie types.
std::shared_ptr< This > shared_ptr
shared_ptr to this class
#define GTSAM_CONCEPT_LIE_TYPE(T)
Non-linear factor base classes.
virtual bool active(const Values &) const
std::shared_ptr< This > shared_ptr
A class for computing marginals in a NonlinearFactorGraph.
Jet< T, N > sqrt(const Jet< T, N > &f)
FastVector< Key > KeyVector
Define collection type once and for all - also used in wrappers.
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
std::uint64_t Key
Integer nonlinear key type.
Marginals marginals(graph, result)
noiseModel::Gaussian::shared_ptr SharedGaussian
bool equals(const This &other, double tol=1e-9) const
check equality