Go to the documentation of this file.
37 using namespace std::placeholders;
38 using namespace gtsam;
56 expectedH = numericalDerivative11<Point3, Unit3>(
point3_,
s);
68 Rot3 R = Rot3::Yaw(0.5);
125 std::function<double(
const Unit3&,
const Unit3&)>
f =
126 std::bind(&
Unit3::dot, std::placeholders::_1, std::placeholders::_2,
156 expected = numericalDerivative11<Vector2,Unit3>(
162 expected = numericalDerivative11<Vector2,Unit3>(
163 std::bind(&
Unit3::error, &
p, std::placeholders::_1,
nullptr), r);
183 expected = numericalDerivative21<Vector2, Unit3, Unit3>(
184 std::bind(&Unit3::errorVector, std::placeholders::_1,
185 std::placeholders::_2,
nullptr,
nullptr),
187 p.errorVector(
q, actual, {});
191 expected = numericalDerivative21<Vector2, Unit3, Unit3>(
192 std::bind(&Unit3::errorVector, std::placeholders::_1,
193 std::placeholders::_2,
nullptr,
nullptr),
195 p.errorVector(r, actual, {});
199 expected = numericalDerivative22<Vector2, Unit3, Unit3>(
200 std::bind(&Unit3::errorVector, std::placeholders::_1,
201 std::placeholders::_2,
nullptr,
nullptr),
203 p.errorVector(
q, {}, actual);
207 expected = numericalDerivative22<Vector2, Unit3, Unit3>(
208 std::bind(&Unit3::errorVector, std::placeholders::_1,
209 std::placeholders::_2,
nullptr,
nullptr),
211 p.errorVector(r, {}, actual);
227 expected = numericalGradient<Unit3>(
229 p.distance(
q, actual);
233 expected = numericalGradient<Unit3>(
235 p.distance(r, actual);
243 Vector actual =
p.localCoordinates(
p);
296 Unit3 p(0, 1, 0),
q(0 - twist, -1 + twist, 0);
302 Unit3 p(0, 1, 0),
q(0 + twist, -1 - twist, 0);
312 Matrix32
B =
p.basis(
H);
314 B_vec <<
B.col(0),
B.col(1);
322 expected << 0.0, -0.994169047, 0.97618706, -0.0233922129, 0.216930458, 0.105264958;
325 Matrix62 expectedH = numericalDerivative11<Vector6, Unit3>(
326 std::bind(
BasisTest, std::placeholders::_1,
nullptr),
p);
347 std::mt19937
rng(42);
348 for (
int i = 0;
i < num_tests;
i++) {
354 Matrix62 expectedH = numericalDerivative11<Vector6, Unit3>(
355 std::bind(
BasisTest, std::placeholders::_1,
nullptr),
p);
411 std::mt19937
rng(42);
413 Point3 expectedMean(0,0,0), actualMean(0,0,0);
414 for (
size_t i = 0;
i < 100;
i++)
415 actualMean = actualMean + Unit3::Random(
rng).point3();
416 actualMean = actualMean / 100;
423 std::mt19937
rng(42);
424 size_t numIterations = 10000;
426 for (
size_t i = 0;
i < numIterations;
i++) {
428 const Unit3 s1 = Unit3::Random(
rng);
429 const Unit3 s2 = Unit3::Random(
rng);
446 Matrix expectedH = numericalDerivative11<Unit3, Point3>(
447 std::bind(Unit3::FromPoint3, std::placeholders::_1,
nullptr),
point);
453 std::vector<Unit3>
data;
462 for (
size_t i = 0;
i <
data.size();
i++) {
468 for (
size_t i = 0;
i <
data.size() - 1;
i++) {
475 for (
size_t i = 0;
i <
data.size();
i++) {
482 for (
size_t i = 0;
i <
data.size();
i++) {
487 for (
size_t i = 0;
i <
data.size() - 1;
i++) {
502 #if GTSAM_ENABLE_BOOST_SERIALIZATION
503 TEST(actualH, Serialization) {
505 EXPECT(serializationTestHelpers::equalsObj(
p));
506 EXPECT(serializationTestHelpers::equalsXML(
p));
507 EXPECT(serializationTestHelpers::equalsBinary(
p));
514 srand(
time(
nullptr));
static int runAllTests(TestResult &result)
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy y set format x g set format y g set format x2 g set format y2 g set format z g set angles radians set nogrid set key title set key left top Right noreverse box linetype linewidth samplen spacing width set nolabel set noarrow set nologscale set logscale x set set pointsize set encoding default set nopolar set noparametric set set set set surface set nocontour set clabel set mapping cartesian set nohidden3d set cntrparam order set cntrparam linear set cntrparam levels auto set cntrparam points set size set set xzeroaxis lt lw set x2zeroaxis lt lw set yzeroaxis lt lw set y2zeroaxis lt lw set tics in set ticslevel set tics set mxtics default set mytics default set mx2tics default set my2tics default set xtics border mirror norotate autofreq set ytics border mirror norotate autofreq set ztics border nomirror norotate autofreq set nox2tics set noy2tics set timestamp bottom norotate set rrange[*:*] noreverse nowriteback set trange[*:*] noreverse nowriteback set urange[*:*] noreverse nowriteback set vrange[*:*] noreverse nowriteback set xlabel matrix size set x2label set timefmt d m y n H
virtual const Values & optimize()
Matrix< SCALARB, Dynamic, Dynamic, opt_B > B
Array< double, 1, 3 > e(1./3., 0.5, 2.)
Point2 unrotate(const Point2 &p, OptionalJacobian< 2, 1 > H1={}, OptionalJacobian< 2, 2 > H2={}) const
#define GTSAM_CONCEPT_TESTABLE_INST(T)
Concept check for values that can be used in unit tests.
#define EXPECT(condition)
Point3 point3_(const Unit3 &p)
internal::FixedSizeMatrix< Y, X >::type numericalDerivative11(std::function< Y(const X &)> h, const X &x, double delta=1e-5)
New-style numerical derivatives using manifold_traits.
static const Point3 point3(0.08, 0.08, 0.0)
internal::FixedSizeMatrix< Y, X2 >::type numericalDerivative22(std::function< Y(const X1 &, const X2 &)> h, const X1 &x1, const X2 &x2, double delta=1e-5)
static Unit3 rotate_(const Rot3 &R, const Unit3 &p)
def retract(a, np.ndarray xi)
const EIGEN_DEVICE_FUNC ExpReturnType exp() const
3D rotation represented as a rotation matrix or quaternion
Scalar EIGEN_BLAS_FUNC() dot(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
Vector6 BasisTest(const Unit3 &p, OptionalJacobian< 6, 2 > H)
Some functions to compute numerical derivatives.
EIGEN_DEVICE_FUNC const Scalar & q
Rot3 is a 3D rotation represented as a rotation matrix if the preprocessor symbol GTSAM_USE_QUATERNIO...
void addPrior(Key key, const T &prior, const SharedNoiseModel &model=nullptr)
noiseModel::Base::shared_ptr SharedNoiseModel
Unit3 retract(const Vector2 &v, OptionalJacobian< 2, 2 > H={}) const
The retract function.
#define EXPECT_DOUBLES_EQUAL(expected, actual, threshold)
Point2(* f)(const Point3 &, OptionalJacobian< 2, 3 >)
Point2 rotate(const Point2 &p, OptionalJacobian< 2, 1 > H1={}, OptionalJacobian< 2, 2 > H2={}) const
Factor Graph consisting of non-linear factors.
static Unit3 unrotate_(const Rot3 &R, const Unit3 &p)
internal::FixedSizeMatrix< Y, X1 >::type numericalDerivative21(const std::function< Y(const X1 &, const X2 &)> &h, const X1 &x1, const X2 &x2, double delta=1e-5)
void insert(Key j, const Value &val)
static const Eigen::MatrixBase< Vector2 >::ConstantReturnType Z_2x1
Array< int, Dynamic, 1 > v
int RealScalar int RealScalar int RealScalar RealScalar * ps
bool assert_equal(const Matrix &expected, const Matrix &actual, double tol)
#define GTSAM_CONCEPT_MANIFOLD_INST(T)
**
P unrotate(const T &r, const P &pt)
Double_ distance(const OrientedPlane3_ &p)
Represents a 3D point on a unit sphere.
Vector3 unitVector(OptionalJacobian< 3, 2 > H={}) const
Return unit-norm Vector.
NonlinearFactorGraph graph
Jet< T, N > sqrt(const Jet< T, N > &f)
P rotate(const T &r, const P &pt)
Rot2 R(Rot2::fromAngle(0.1))
Vector2 localCoordinates(const Unit3 &s) const
The local coordinates function.
void addExpressionFactor(const SharedNoiseModel &R, const T &z, const Expression< T > &h)
gtsam
Author(s):
autogenerated on Wed Jan 1 2025 04:07:39