MatrixExponential.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2009, 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
00005 // Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
00006 //
00007 // This Source Code Form is subject to the terms of the Mozilla
00008 // Public License v. 2.0. If a copy of the MPL was not distributed
00009 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00010 
00011 #ifndef EIGEN_MATRIX_EXPONENTIAL
00012 #define EIGEN_MATRIX_EXPONENTIAL
00013 
00014 #include "StemFunction.h"
00015 
00016 namespace Eigen {
00017 
00023 template <typename MatrixType>
00024 class MatrixExponential {
00025 
00026   public:
00027 
00035     MatrixExponential(const MatrixType &M);
00036 
00041     template <typename ResultType> 
00042     void compute(ResultType &result);
00043 
00044   private:
00045 
00046     // Prevent copying
00047     MatrixExponential(const MatrixExponential&);
00048     MatrixExponential& operator=(const MatrixExponential&);
00049 
00057     void pade3(const MatrixType &A);
00058 
00066     void pade5(const MatrixType &A);
00067 
00075     void pade7(const MatrixType &A);
00076 
00084     void pade9(const MatrixType &A);
00085 
00093     void pade13(const MatrixType &A);
00094 
00104     void pade17(const MatrixType &A);
00105 
00119     void computeUV(double);
00120 
00125     void computeUV(float);
00126     
00131     void computeUV(long double);
00132 
00133     typedef typename internal::traits<MatrixType>::Scalar Scalar;
00134     typedef typename NumTraits<Scalar>::Real RealScalar;
00135     typedef typename std::complex<RealScalar> ComplexScalar;
00136 
00138     typename internal::nested<MatrixType>::type m_M;
00139 
00141     MatrixType m_U;
00142 
00144     MatrixType m_V;
00145 
00147     MatrixType m_tmp1;
00148 
00150     MatrixType m_tmp2;
00151 
00153     MatrixType m_Id;
00154 
00156     int m_squarings;
00157 
00159     RealScalar m_l1norm;
00160 };
00161 
00162 template <typename MatrixType>
00163 MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M) :
00164   m_M(M),
00165   m_U(M.rows(),M.cols()),
00166   m_V(M.rows(),M.cols()),
00167   m_tmp1(M.rows(),M.cols()),
00168   m_tmp2(M.rows(),M.cols()),
00169   m_Id(MatrixType::Identity(M.rows(), M.cols())),
00170   m_squarings(0),
00171   m_l1norm(M.cwiseAbs().colwise().sum().maxCoeff())
00172 {
00173   /* empty body */
00174 }
00175 
00176 template <typename MatrixType>
00177 template <typename ResultType> 
00178 void MatrixExponential<MatrixType>::compute(ResultType &result)
00179 {
00180 #if LDBL_MANT_DIG > 112 // rarely happens
00181   if(sizeof(RealScalar) > 14) {
00182     result = m_M.matrixFunction(StdStemFunctions<ComplexScalar>::exp);
00183     return;
00184   }
00185 #endif
00186   computeUV(RealScalar());
00187   m_tmp1 = m_U + m_V;   // numerator of Pade approximant
00188   m_tmp2 = -m_U + m_V;  // denominator of Pade approximant
00189   result = m_tmp2.partialPivLu().solve(m_tmp1);
00190   for (int i=0; i<m_squarings; i++)
00191     result *= result;   // undo scaling by repeated squaring
00192 }
00193 
00194 template <typename MatrixType>
00195 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade3(const MatrixType &A)
00196 {
00197   const RealScalar b[] = {120., 60., 12., 1.};
00198   m_tmp1.noalias() = A * A;
00199   m_tmp2 = b[3]*m_tmp1 + b[1]*m_Id;
00200   m_U.noalias() = A * m_tmp2;
00201   m_V = b[2]*m_tmp1 + b[0]*m_Id;
00202 }
00203 
00204 template <typename MatrixType>
00205 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade5(const MatrixType &A)
00206 {
00207   const RealScalar b[] = {30240., 15120., 3360., 420., 30., 1.};
00208   MatrixType A2 = A * A;
00209   m_tmp1.noalias() = A2 * A2;
00210   m_tmp2 = b[5]*m_tmp1 + b[3]*A2 + b[1]*m_Id;
00211   m_U.noalias() = A * m_tmp2;
00212   m_V = b[4]*m_tmp1 + b[2]*A2 + b[0]*m_Id;
00213 }
00214 
00215 template <typename MatrixType>
00216 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade7(const MatrixType &A)
00217 {
00218   const RealScalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
00219   MatrixType A2 = A * A;
00220   MatrixType A4 = A2 * A2;
00221   m_tmp1.noalias() = A4 * A2;
00222   m_tmp2 = b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
00223   m_U.noalias() = A * m_tmp2;
00224   m_V = b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
00225 }
00226 
00227 template <typename MatrixType>
00228 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade9(const MatrixType &A)
00229 {
00230   const RealScalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
00231                       2162160., 110880., 3960., 90., 1.};
00232   MatrixType A2 = A * A;
00233   MatrixType A4 = A2 * A2;
00234   MatrixType A6 = A4 * A2;
00235   m_tmp1.noalias() = A6 * A2;
00236   m_tmp2 = b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
00237   m_U.noalias() = A * m_tmp2;
00238   m_V = b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
00239 }
00240 
00241 template <typename MatrixType>
00242 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade13(const MatrixType &A)
00243 {
00244   const RealScalar b[] = {64764752532480000., 32382376266240000., 7771770303897600.,
00245                       1187353796428800., 129060195264000., 10559470521600., 670442572800.,
00246                       33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.};
00247   MatrixType A2 = A * A;
00248   MatrixType A4 = A2 * A2;
00249   m_tmp1.noalias() = A4 * A2;
00250   m_V = b[13]*m_tmp1 + b[11]*A4 + b[9]*A2; // used for temporary storage
00251   m_tmp2.noalias() = m_tmp1 * m_V;
00252   m_tmp2 += b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
00253   m_U.noalias() = A * m_tmp2;
00254   m_tmp2 = b[12]*m_tmp1 + b[10]*A4 + b[8]*A2;
00255   m_V.noalias() = m_tmp1 * m_tmp2;
00256   m_V += b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
00257 }
00258 
00259 #if LDBL_MANT_DIG > 64
00260 template <typename MatrixType>
00261 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade17(const MatrixType &A)
00262 {
00263   const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
00264                       100610229646136770560000.L, 15720348382208870400000.L,
00265                       1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
00266                       595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
00267                       33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
00268                       46512.L, 306.L, 1.L};
00269   MatrixType A2 = A * A;
00270   MatrixType A4 = A2 * A2;
00271   MatrixType A6 = A4 * A2;
00272   m_tmp1.noalias() = A4 * A4;
00273   m_V = b[17]*m_tmp1 + b[15]*A6 + b[13]*A4 + b[11]*A2; // used for temporary storage
00274   m_tmp2.noalias() = m_tmp1 * m_V;
00275   m_tmp2 += b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
00276   m_U.noalias() = A * m_tmp2;
00277   m_tmp2 = b[16]*m_tmp1 + b[14]*A6 + b[12]*A4 + b[10]*A2;
00278   m_V.noalias() = m_tmp1 * m_tmp2;
00279   m_V += b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
00280 }
00281 #endif
00282 
00283 template <typename MatrixType>
00284 void MatrixExponential<MatrixType>::computeUV(float)
00285 {
00286   using std::frexp;
00287   using std::pow;
00288   if (m_l1norm < 4.258730016922831e-001) {
00289     pade3(m_M);
00290   } else if (m_l1norm < 1.880152677804762e+000) {
00291     pade5(m_M);
00292   } else {
00293     const float maxnorm = 3.925724783138660f;
00294     frexp(m_l1norm / maxnorm, &m_squarings);
00295     if (m_squarings < 0) m_squarings = 0;
00296     MatrixType A = m_M / pow(Scalar(2), m_squarings);
00297     pade7(A);
00298   }
00299 }
00300 
00301 template <typename MatrixType>
00302 void MatrixExponential<MatrixType>::computeUV(double)
00303 {
00304   using std::frexp;
00305   using std::pow;
00306   if (m_l1norm < 1.495585217958292e-002) {
00307     pade3(m_M);
00308   } else if (m_l1norm < 2.539398330063230e-001) {
00309     pade5(m_M);
00310   } else if (m_l1norm < 9.504178996162932e-001) {
00311     pade7(m_M);
00312   } else if (m_l1norm < 2.097847961257068e+000) {
00313     pade9(m_M);
00314   } else {
00315     const double maxnorm = 5.371920351148152;
00316     frexp(m_l1norm / maxnorm, &m_squarings);
00317     if (m_squarings < 0) m_squarings = 0;
00318     MatrixType A = m_M / pow(Scalar(2), m_squarings);
00319     pade13(A);
00320   }
00321 }
00322 
00323 template <typename MatrixType>
00324 void MatrixExponential<MatrixType>::computeUV(long double)
00325 {
00326   using std::frexp;
00327   using std::pow;
00328 #if   LDBL_MANT_DIG == 53   // double precision
00329   computeUV(double());
00330 #elif LDBL_MANT_DIG <= 64   // extended precision
00331   if (m_l1norm < 4.1968497232266989671e-003L) {
00332     pade3(m_M);
00333   } else if (m_l1norm < 1.1848116734693823091e-001L) {
00334     pade5(m_M);
00335   } else if (m_l1norm < 5.5170388480686700274e-001L) {
00336     pade7(m_M);
00337   } else if (m_l1norm < 1.3759868875587845383e+000L) {
00338     pade9(m_M);
00339   } else {
00340     const long double maxnorm = 4.0246098906697353063L;
00341     frexp(m_l1norm / maxnorm, &m_squarings);
00342     if (m_squarings < 0) m_squarings = 0;
00343     MatrixType A = m_M / pow(Scalar(2), m_squarings);
00344     pade13(A);
00345   }
00346 #elif LDBL_MANT_DIG <= 106  // double-double
00347   if (m_l1norm < 3.2787892205607026992947488108213e-005L) {
00348     pade3(m_M);
00349   } else if (m_l1norm < 6.4467025060072760084130906076332e-003L) {
00350     pade5(m_M);
00351   } else if (m_l1norm < 6.8988028496595374751374122881143e-002L) {
00352     pade7(m_M);
00353   } else if (m_l1norm < 2.7339737518502231741495857201670e-001L) {
00354     pade9(m_M);
00355   } else if (m_l1norm < 1.3203382096514474905666448850278e+000L) {
00356     pade13(m_M);
00357   } else {
00358     const long double maxnorm = 3.2579440895405400856599663723517L;
00359     frexp(m_l1norm / maxnorm, &m_squarings);
00360     if (m_squarings < 0) m_squarings = 0;
00361     MatrixType A = m_M / pow(Scalar(2), m_squarings);
00362     pade17(A);
00363   }
00364 #elif LDBL_MANT_DIG <= 112  // quadruple precison
00365   if (m_l1norm < 1.639394610288918690547467954466970e-005L) {
00366     pade3(m_M);
00367   } else if (m_l1norm < 4.253237712165275566025884344433009e-003L) {
00368     pade5(m_M);
00369   } else if (m_l1norm < 5.125804063165764409885122032933142e-002L) {
00370     pade7(m_M);
00371   } else if (m_l1norm < 2.170000765161155195453205651889853e-001L) {
00372     pade9(m_M);
00373   } else if (m_l1norm < 1.125358383453143065081397882891878e+000L) {
00374     pade13(m_M);
00375   } else {
00376     const long double maxnorm = 2.884233277829519311757165057717815L;
00377     frexp(m_l1norm / maxnorm, &m_squarings);
00378     if (m_squarings < 0) m_squarings = 0;
00379     MatrixType A = m_M / pow(Scalar(2), m_squarings);
00380     pade17(A);
00381   }
00382 #else
00383   // this case should be handled in compute()
00384   eigen_assert(false && "Bug in MatrixExponential"); 
00385 #endif  // LDBL_MANT_DIG
00386 }
00387 
00400 template<typename Derived> struct MatrixExponentialReturnValue
00401 : public ReturnByValue<MatrixExponentialReturnValue<Derived> >
00402 {
00403     typedef typename Derived::Index Index;
00404   public:
00410     MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }
00411 
00417     template <typename ResultType>
00418     inline void evalTo(ResultType& result) const
00419     {
00420       const typename Derived::PlainObject srcEvaluated = m_src.eval();
00421       MatrixExponential<typename Derived::PlainObject> me(srcEvaluated);
00422       me.compute(result);
00423     }
00424 
00425     Index rows() const { return m_src.rows(); }
00426     Index cols() const { return m_src.cols(); }
00427 
00428   protected:
00429     const Derived& m_src;
00430   private:
00431     MatrixExponentialReturnValue& operator=(const MatrixExponentialReturnValue&);
00432 };
00433 
00434 namespace internal {
00435 template<typename Derived>
00436 struct traits<MatrixExponentialReturnValue<Derived> >
00437 {
00438   typedef typename Derived::PlainObject ReturnType;
00439 };
00440 }
00441 
00442 template <typename Derived>
00443 const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
00444 {
00445   eigen_assert(rows() == cols());
00446   return MatrixExponentialReturnValue<Derived>(derived());
00447 }
00448 
00449 } // end namespace Eigen
00450 
00451 #endif // EIGEN_MATRIX_EXPONENTIAL


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:33:07