00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 #ifndef EIGEN_MATRIX_POWER
00011 #define EIGEN_MATRIX_POWER
00012
00013 namespace Eigen {
00014
00015 template<typename MatrixType> class MatrixPower;
00016
00017 template<typename MatrixType>
00018 class MatrixPowerRetval : public ReturnByValue< MatrixPowerRetval<MatrixType> >
00019 {
00020 public:
00021 typedef typename MatrixType::RealScalar RealScalar;
00022 typedef typename MatrixType::Index Index;
00023
00024 MatrixPowerRetval(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p)
00025 { }
00026
00027 template<typename ResultType>
00028 inline void evalTo(ResultType& res) const
00029 { m_pow.compute(res, m_p); }
00030
00031 Index rows() const { return m_pow.rows(); }
00032 Index cols() const { return m_pow.cols(); }
00033
00034 private:
00035 MatrixPower<MatrixType>& m_pow;
00036 const RealScalar m_p;
00037 MatrixPowerRetval& operator=(const MatrixPowerRetval&);
00038 };
00039
00040 template<typename MatrixType>
00041 class MatrixPowerAtomic
00042 {
00043 private:
00044 enum {
00045 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
00046 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
00047 };
00048 typedef typename MatrixType::Scalar Scalar;
00049 typedef typename MatrixType::RealScalar RealScalar;
00050 typedef std::complex<RealScalar> ComplexScalar;
00051 typedef typename MatrixType::Index Index;
00052 typedef Array<Scalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> ArrayType;
00053
00054 const MatrixType& m_A;
00055 RealScalar m_p;
00056
00057 void computePade(int degree, const MatrixType& IminusT, MatrixType& res) const;
00058 void compute2x2(MatrixType& res, RealScalar p) const;
00059 void computeBig(MatrixType& res) const;
00060 static int getPadeDegree(float normIminusT);
00061 static int getPadeDegree(double normIminusT);
00062 static int getPadeDegree(long double normIminusT);
00063 static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p);
00064 static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p);
00065
00066 public:
00067 MatrixPowerAtomic(const MatrixType& T, RealScalar p);
00068 void compute(MatrixType& res) const;
00069 };
00070
00071 template<typename MatrixType>
00072 MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) :
00073 m_A(T), m_p(p)
00074 { eigen_assert(T.rows() == T.cols()); }
00075
00076 template<typename MatrixType>
00077 void MatrixPowerAtomic<MatrixType>::compute(MatrixType& res) const
00078 {
00079 res.resizeLike(m_A);
00080 switch (m_A.rows()) {
00081 case 0:
00082 break;
00083 case 1:
00084 res(0,0) = std::pow(m_A(0,0), m_p);
00085 break;
00086 case 2:
00087 compute2x2(res, m_p);
00088 break;
00089 default:
00090 computeBig(res);
00091 }
00092 }
00093
00094 template<typename MatrixType>
00095 void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, MatrixType& res) const
00096 {
00097 int i = degree<<1;
00098 res = (m_p-degree) / ((i-1)<<1) * IminusT;
00099 for (--i; i; --i) {
00100 res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
00101 .solve((i==1 ? -m_p : i&1 ? (-m_p-(i>>1))/(i<<1) : (m_p-(i>>1))/((i-1)<<1)) * IminusT).eval();
00102 }
00103 res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
00104 }
00105
00106
00107 template<typename MatrixType>
00108 void MatrixPowerAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) const
00109 {
00110 using std::abs;
00111 using std::pow;
00112
00113 res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);
00114
00115 for (Index i=1; i < m_A.cols(); ++i) {
00116 res.coeffRef(i,i) = pow(m_A.coeff(i,i), p);
00117 if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i))
00118 res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1);
00119 else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1)))
00120 res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1));
00121 else
00122 res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p);
00123 res.coeffRef(i-1,i) *= m_A.coeff(i-1,i);
00124 }
00125 }
00126
00127 template<typename MatrixType>
00128 void MatrixPowerAtomic<MatrixType>::computeBig(MatrixType& res) const
00129 {
00130 const int digits = std::numeric_limits<RealScalar>::digits;
00131 const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1f:
00132 digits <= 53? 2.789358995219730e-1:
00133 digits <= 64? 2.4471944416607995472e-1L:
00134 digits <= 106? 1.1016843812851143391275867258512e-1L:
00135 9.134603732914548552537150753385375e-2L;
00136 MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
00137 RealScalar normIminusT;
00138 int degree, degree2, numberOfSquareRoots = 0;
00139 bool hasExtraSquareRoot = false;
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154 for (Index i=0; i < m_A.cols(); ++i)
00155 eigen_assert(m_A(i,i) != RealScalar(0));
00156
00157 while (true) {
00158 IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T;
00159 normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
00160 if (normIminusT < maxNormForPade) {
00161 degree = getPadeDegree(normIminusT);
00162 degree2 = getPadeDegree(normIminusT/2);
00163 if (degree - degree2 <= 1 || hasExtraSquareRoot)
00164 break;
00165 hasExtraSquareRoot = true;
00166 }
00167 MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
00168 T = sqrtT.template triangularView<Upper>();
00169 ++numberOfSquareRoots;
00170 }
00171 computePade(degree, IminusT, res);
00172
00173 for (; numberOfSquareRoots; --numberOfSquareRoots) {
00174 compute2x2(res, std::ldexp(m_p, -numberOfSquareRoots));
00175 res = res.template triangularView<Upper>() * res;
00176 }
00177 compute2x2(res, m_p);
00178 }
00179
00180 template<typename MatrixType>
00181 inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(float normIminusT)
00182 {
00183 const float maxNormForPade[] = { 2.8064004e-1f , 4.3386528e-1f };
00184 int degree = 3;
00185 for (; degree <= 4; ++degree)
00186 if (normIminusT <= maxNormForPade[degree - 3])
00187 break;
00188 return degree;
00189 }
00190
00191 template<typename MatrixType>
00192 inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(double normIminusT)
00193 {
00194 const double maxNormForPade[] = { 1.884160592658218e-2 , 6.038881904059573e-2, 1.239917516308172e-1,
00195 1.999045567181744e-1, 2.789358995219730e-1 };
00196 int degree = 3;
00197 for (; degree <= 7; ++degree)
00198 if (normIminusT <= maxNormForPade[degree - 3])
00199 break;
00200 return degree;
00201 }
00202
00203 template<typename MatrixType>
00204 inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT)
00205 {
00206 #if LDBL_MANT_DIG == 53
00207 const int maxPadeDegree = 7;
00208 const double maxNormForPade[] = { 1.884160592658218e-2L , 6.038881904059573e-2L, 1.239917516308172e-1L,
00209 1.999045567181744e-1L, 2.789358995219730e-1L };
00210 #elif LDBL_MANT_DIG <= 64
00211 const int maxPadeDegree = 8;
00212 const double maxNormForPade[] = { 6.3854693117491799460e-3L , 2.6394893435456973676e-2L,
00213 6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
00214 #elif LDBL_MANT_DIG <= 106
00215 const int maxPadeDegree = 10;
00216 const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L ,
00217 1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
00218 2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
00219 1.1016843812851143391275867258512e-1L };
00220 #else
00221 const int maxPadeDegree = 10;
00222 const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L ,
00223 6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
00224 9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
00225 3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L,
00226 9.134603732914548552537150753385375e-2L };
00227 #endif
00228 int degree = 3;
00229 for (; degree <= maxPadeDegree; ++degree)
00230 if (normIminusT <= maxNormForPade[degree - 3])
00231 break;
00232 return degree;
00233 }
00234
00235 template<typename MatrixType>
00236 inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar
00237 MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p)
00238 {
00239 ComplexScalar logCurr = std::log(curr);
00240 ComplexScalar logPrev = std::log(prev);
00241 int unwindingNumber = std::ceil((numext::imag(logCurr - logPrev) - M_PI) / (2*M_PI));
00242 ComplexScalar w = numext::atanh2(curr - prev, curr + prev) + ComplexScalar(0, M_PI*unwindingNumber);
00243 return RealScalar(2) * std::exp(RealScalar(0.5) * p * (logCurr + logPrev)) * std::sinh(p * w) / (curr - prev);
00244 }
00245
00246 template<typename MatrixType>
00247 inline typename MatrixPowerAtomic<MatrixType>::RealScalar
00248 MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p)
00249 {
00250 RealScalar w = numext::atanh2(curr - prev, curr + prev);
00251 return 2 * std::exp(p * (std::log(curr) + std::log(prev)) / 2) * std::sinh(p * w) / (curr - prev);
00252 }
00253
00273 template<typename MatrixType>
00274 class MatrixPower
00275 {
00276 private:
00277 enum {
00278 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
00279 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
00280 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
00281 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
00282 };
00283 typedef typename MatrixType::Scalar Scalar;
00284 typedef typename MatrixType::RealScalar RealScalar;
00285 typedef typename MatrixType::Index Index;
00286
00287 public:
00296 explicit MatrixPower(const MatrixType& A) : m_A(A), m_conditionNumber(0)
00297 { eigen_assert(A.rows() == A.cols()); }
00298
00306 const MatrixPowerRetval<MatrixType> operator()(RealScalar p)
00307 { return MatrixPowerRetval<MatrixType>(*this, p); }
00308
00316 template<typename ResultType>
00317 void compute(ResultType& res, RealScalar p);
00318
00319 Index rows() const { return m_A.rows(); }
00320 Index cols() const { return m_A.cols(); }
00321
00322 private:
00323 typedef std::complex<RealScalar> ComplexScalar;
00324 typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, MatrixType::Options,
00325 MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrix;
00326
00327 typename MatrixType::Nested m_A;
00328 MatrixType m_tmp;
00329 ComplexMatrix m_T, m_U, m_fT;
00330 RealScalar m_conditionNumber;
00331
00332 RealScalar modfAndInit(RealScalar, RealScalar*);
00333
00334 template<typename ResultType>
00335 void computeIntPower(ResultType&, RealScalar);
00336
00337 template<typename ResultType>
00338 void computeFracPower(ResultType&, RealScalar);
00339
00340 template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
00341 static void revertSchur(
00342 Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
00343 const ComplexMatrix& T,
00344 const ComplexMatrix& U);
00345
00346 template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
00347 static void revertSchur(
00348 Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
00349 const ComplexMatrix& T,
00350 const ComplexMatrix& U);
00351 };
00352
00353 template<typename MatrixType>
00354 template<typename ResultType>
00355 void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p)
00356 {
00357 switch (cols()) {
00358 case 0:
00359 break;
00360 case 1:
00361 res(0,0) = std::pow(m_A.coeff(0,0), p);
00362 break;
00363 default:
00364 RealScalar intpart, x = modfAndInit(p, &intpart);
00365 computeIntPower(res, intpart);
00366 computeFracPower(res, x);
00367 }
00368 }
00369
00370 template<typename MatrixType>
00371 typename MatrixPower<MatrixType>::RealScalar
00372 MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart)
00373 {
00374 typedef Array<RealScalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> RealArray;
00375
00376 *intpart = std::floor(x);
00377 RealScalar res = x - *intpart;
00378
00379 if (!m_conditionNumber && res) {
00380 const ComplexSchur<MatrixType> schurOfA(m_A);
00381 m_T = schurOfA.matrixT();
00382 m_U = schurOfA.matrixU();
00383
00384 const RealArray absTdiag = m_T.diagonal().array().abs();
00385 m_conditionNumber = absTdiag.maxCoeff() / absTdiag.minCoeff();
00386 }
00387
00388 if (res>RealScalar(0.5) && res>(1-res)*std::pow(m_conditionNumber, res)) {
00389 --res;
00390 ++*intpart;
00391 }
00392 return res;
00393 }
00394
00395 template<typename MatrixType>
00396 template<typename ResultType>
00397 void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
00398 {
00399 RealScalar pp = std::abs(p);
00400
00401 if (p<0) m_tmp = m_A.inverse();
00402 else m_tmp = m_A;
00403
00404 res = MatrixType::Identity(rows(), cols());
00405 while (pp >= 1) {
00406 if (std::fmod(pp, 2) >= 1)
00407 res = m_tmp * res;
00408 m_tmp *= m_tmp;
00409 pp /= 2;
00410 }
00411 }
00412
00413 template<typename MatrixType>
00414 template<typename ResultType>
00415 void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
00416 {
00417 if (p) {
00418 eigen_assert(m_conditionNumber);
00419 MatrixPowerAtomic<ComplexMatrix>(m_T, p).compute(m_fT);
00420 revertSchur(m_tmp, m_fT, m_U);
00421 res = m_tmp * res;
00422 }
00423 }
00424
00425 template<typename MatrixType>
00426 template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
00427 inline void MatrixPower<MatrixType>::revertSchur(
00428 Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
00429 const ComplexMatrix& T,
00430 const ComplexMatrix& U)
00431 { res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }
00432
00433 template<typename MatrixType>
00434 template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
00435 inline void MatrixPower<MatrixType>::revertSchur(
00436 Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
00437 const ComplexMatrix& T,
00438 const ComplexMatrix& U)
00439 { res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
00440
00454 template<typename Derived>
00455 class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Derived> >
00456 {
00457 public:
00458 typedef typename Derived::PlainObject PlainObject;
00459 typedef typename Derived::RealScalar RealScalar;
00460 typedef typename Derived::Index Index;
00461
00468 MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p)
00469 { }
00470
00477 template<typename ResultType>
00478 inline void evalTo(ResultType& res) const
00479 { MatrixPower<PlainObject>(m_A.eval()).compute(res, m_p); }
00480
00481 Index rows() const { return m_A.rows(); }
00482 Index cols() const { return m_A.cols(); }
00483
00484 private:
00485 const Derived& m_A;
00486 const RealScalar m_p;
00487 MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&);
00488 };
00489
00490 namespace internal {
00491
00492 template<typename MatrixPowerType>
00493 struct traits< MatrixPowerRetval<MatrixPowerType> >
00494 { typedef typename MatrixPowerType::PlainObject ReturnType; };
00495
00496 template<typename Derived>
00497 struct traits< MatrixPowerReturnValue<Derived> >
00498 { typedef typename Derived::PlainObject ReturnType; };
00499
00500 }
00501
00502 template<typename Derived>
00503 const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const
00504 { return MatrixPowerReturnValue<Derived>(derived(), p); }
00505
00506 }
00507
00508 #endif // EIGEN_MATRIX_POWER