PartialPivLU.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
00005 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
00006 //
00007 // This Source Code Form is subject to the terms of the Mozilla
00008 // Public License v. 2.0. If a copy of the MPL was not distributed
00009 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00010 
00011 #ifndef EIGEN_PARTIALLU_H
00012 #define EIGEN_PARTIALLU_H
00013 
00014 namespace Eigen { 
00015 
00047 template<typename _MatrixType> class PartialPivLU
00048 {
00049   public:
00050 
00051     typedef _MatrixType MatrixType;
00052     enum {
00053       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
00054       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
00055       Options = MatrixType::Options,
00056       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
00057       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
00058     };
00059     typedef typename MatrixType::Scalar Scalar;
00060     typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
00061     typedef typename internal::traits<MatrixType>::StorageKind StorageKind;
00062     typedef typename MatrixType::Index Index;
00063     typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
00064     typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
00065 
00066 
00073     PartialPivLU();
00074 
00081     PartialPivLU(Index size);
00082 
00090     PartialPivLU(const MatrixType& matrix);
00091 
00092     PartialPivLU& compute(const MatrixType& matrix);
00093 
00100     inline const MatrixType& matrixLU() const
00101     {
00102       eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
00103       return m_lu;
00104     }
00105 
00108     inline const PermutationType& permutationP() const
00109     {
00110       eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
00111       return m_p;
00112     }
00113 
00131     template<typename Rhs>
00132     inline const internal::solve_retval<PartialPivLU, Rhs>
00133     solve(const MatrixBase<Rhs>& b) const
00134     {
00135       eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
00136       return internal::solve_retval<PartialPivLU, Rhs>(*this, b.derived());
00137     }
00138 
00146     inline const internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const
00147     {
00148       eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
00149       return internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType>
00150                (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
00151     }
00152 
00166     typename internal::traits<MatrixType>::Scalar determinant() const;
00167 
00168     MatrixType reconstructedMatrix() const;
00169 
00170     inline Index rows() const { return m_lu.rows(); }
00171     inline Index cols() const { return m_lu.cols(); }
00172 
00173   protected:
00174     
00175     static void check_template_parameters()
00176     {
00177       EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
00178     }
00179     
00180     MatrixType m_lu;
00181     PermutationType m_p;
00182     TranspositionType m_rowsTranspositions;
00183     Index m_det_p;
00184     bool m_isInitialized;
00185 };
00186 
00187 template<typename MatrixType>
00188 PartialPivLU<MatrixType>::PartialPivLU()
00189   : m_lu(),
00190     m_p(),
00191     m_rowsTranspositions(),
00192     m_det_p(0),
00193     m_isInitialized(false)
00194 {
00195 }
00196 
00197 template<typename MatrixType>
00198 PartialPivLU<MatrixType>::PartialPivLU(Index size)
00199   : m_lu(size, size),
00200     m_p(size),
00201     m_rowsTranspositions(size),
00202     m_det_p(0),
00203     m_isInitialized(false)
00204 {
00205 }
00206 
00207 template<typename MatrixType>
00208 PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix)
00209   : m_lu(matrix.rows(), matrix.rows()),
00210     m_p(matrix.rows()),
00211     m_rowsTranspositions(matrix.rows()),
00212     m_det_p(0),
00213     m_isInitialized(false)
00214 {
00215   compute(matrix);
00216 }
00217 
00218 namespace internal {
00219 
00221 template<typename Scalar, int StorageOrder, typename PivIndex>
00222 struct partial_lu_impl
00223 {
00224   // FIXME add a stride to Map, so that the following mapping becomes easier,
00225   // another option would be to create an expression being able to automatically
00226   // warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly
00227   // a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix,
00228   // and Block.
00229   typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU;
00230   typedef Block<MapLU, Dynamic, Dynamic> MatrixType;
00231   typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
00232   typedef typename MatrixType::RealScalar RealScalar;
00233   typedef typename MatrixType::Index Index;
00234 
00245   static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions)
00246   {
00247     const Index rows = lu.rows();
00248     const Index cols = lu.cols();
00249     const Index size = (std::min)(rows,cols);
00250     nb_transpositions = 0;
00251     Index first_zero_pivot = -1;
00252     for(Index k = 0; k < size; ++k)
00253     {
00254       Index rrows = rows-k-1;
00255       Index rcols = cols-k-1;
00256         
00257       Index row_of_biggest_in_col;
00258       RealScalar biggest_in_corner
00259         = lu.col(k).tail(rows-k).cwiseAbs().maxCoeff(&row_of_biggest_in_col);
00260       row_of_biggest_in_col += k;
00261 
00262       row_transpositions[k] = PivIndex(row_of_biggest_in_col);
00263 
00264       if(biggest_in_corner != RealScalar(0))
00265       {
00266         if(k != row_of_biggest_in_col)
00267         {
00268           lu.row(k).swap(lu.row(row_of_biggest_in_col));
00269           ++nb_transpositions;
00270         }
00271 
00272         // FIXME shall we introduce a safe quotient expression in cas 1/lu.coeff(k,k)
00273         // overflow but not the actual quotient?
00274         lu.col(k).tail(rrows) /= lu.coeff(k,k);
00275       }
00276       else if(first_zero_pivot==-1)
00277       {
00278         // the pivot is exactly zero, we record the index of the first pivot which is exactly 0,
00279         // and continue the factorization such we still have A = PLU
00280         first_zero_pivot = k;
00281       }
00282 
00283       if(k<rows-1)
00284         lu.bottomRightCorner(rrows,rcols).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rcols);
00285     }
00286     return first_zero_pivot;
00287   }
00288 
00304   static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256)
00305   {
00306     MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols);
00307     MatrixType lu(lu1,0,0,rows,cols);
00308 
00309     const Index size = (std::min)(rows,cols);
00310 
00311     // if the matrix is too small, no blocking:
00312     if(size<=16)
00313     {
00314       return unblocked_lu(lu, row_transpositions, nb_transpositions);
00315     }
00316 
00317     // automatically adjust the number of subdivisions to the size
00318     // of the matrix so that there is enough sub blocks:
00319     Index blockSize;
00320     {
00321       blockSize = size/8;
00322       blockSize = (blockSize/16)*16;
00323       blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize);
00324     }
00325 
00326     nb_transpositions = 0;
00327     Index first_zero_pivot = -1;
00328     for(Index k = 0; k < size; k+=blockSize)
00329     {
00330       Index bs = (std::min)(size-k,blockSize); // actual size of the block
00331       Index trows = rows - k - bs; // trailing rows
00332       Index tsize = size - k - bs; // trailing size
00333 
00334       // partition the matrix:
00335       //                          A00 | A01 | A02
00336       // lu  = A_0 | A_1 | A_2 =  A10 | A11 | A12
00337       //                          A20 | A21 | A22
00338       BlockType A_0(lu,0,0,rows,k);
00339       BlockType A_2(lu,0,k+bs,rows,tsize);
00340       BlockType A11(lu,k,k,bs,bs);
00341       BlockType A12(lu,k,k+bs,bs,tsize);
00342       BlockType A21(lu,k+bs,k,trows,bs);
00343       BlockType A22(lu,k+bs,k+bs,trows,tsize);
00344 
00345       PivIndex nb_transpositions_in_panel;
00346       // recursively call the blocked LU algorithm on [A11^T A21^T]^T
00347       // with a very small blocking size:
00348       Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride,
00349                    row_transpositions+k, nb_transpositions_in_panel, 16);
00350       if(ret>=0 && first_zero_pivot==-1)
00351         first_zero_pivot = k+ret;
00352 
00353       nb_transpositions += nb_transpositions_in_panel;
00354       // update permutations and apply them to A_0
00355       for(Index i=k; i<k+bs; ++i)
00356       {
00357         Index piv = (row_transpositions[i] += k);
00358         A_0.row(i).swap(A_0.row(piv));
00359       }
00360 
00361       if(trows)
00362       {
00363         // apply permutations to A_2
00364         for(Index i=k;i<k+bs; ++i)
00365           A_2.row(i).swap(A_2.row(row_transpositions[i]));
00366 
00367         // A12 = A11^-1 A12
00368         A11.template triangularView<UnitLower>().solveInPlace(A12);
00369 
00370         A22.noalias() -= A21 * A12;
00371       }
00372     }
00373     return first_zero_pivot;
00374   }
00375 };
00376 
00379 template<typename MatrixType, typename TranspositionType>
00380 void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::Index& nb_transpositions)
00381 {
00382   eigen_assert(lu.cols() == row_transpositions.size());
00383   eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
00384 
00385   partial_lu_impl
00386     <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::Index>
00387     ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
00388 }
00389 
00390 } // end namespace internal
00391 
00392 template<typename MatrixType>
00393 PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix)
00394 {
00395   check_template_parameters();
00396   
00397   // the row permutation is stored as int indices, so just to be sure:
00398   eigen_assert(matrix.rows()<NumTraits<int>::highest());
00399   
00400   m_lu = matrix;
00401 
00402   eigen_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
00403   const Index size = matrix.rows();
00404 
00405   m_rowsTranspositions.resize(size);
00406 
00407   typename TranspositionType::Index nb_transpositions;
00408   internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
00409   m_det_p = (nb_transpositions%2) ? -1 : 1;
00410 
00411   m_p = m_rowsTranspositions;
00412 
00413   m_isInitialized = true;
00414   return *this;
00415 }
00416 
00417 template<typename MatrixType>
00418 typename internal::traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
00419 {
00420   eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
00421   return Scalar(m_det_p) * m_lu.diagonal().prod();
00422 }
00423 
00427 template<typename MatrixType>
00428 MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
00429 {
00430   eigen_assert(m_isInitialized && "LU is not initialized.");
00431   // LU
00432   MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix()
00433                  * m_lu.template triangularView<Upper>();
00434 
00435   // P^{-1}(LU)
00436   res = m_p.inverse() * res;
00437 
00438   return res;
00439 }
00440 
00441 /***** Implementation of solve() *****************************************************/
00442 
00443 namespace internal {
00444 
00445 template<typename _MatrixType, typename Rhs>
00446 struct solve_retval<PartialPivLU<_MatrixType>, Rhs>
00447   : solve_retval_base<PartialPivLU<_MatrixType>, Rhs>
00448 {
00449   EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs)
00450 
00451   template<typename Dest> void evalTo(Dest& dst) const
00452   {
00453     /* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
00454     * So we proceed as follows:
00455     * Step 1: compute c = Pb.
00456     * Step 2: replace c by the solution x to Lx = c.
00457     * Step 3: replace c by the solution x to Ux = c.
00458     */
00459 
00460     eigen_assert(rhs().rows() == dec().matrixLU().rows());
00461 
00462     // Step 1
00463     dst = dec().permutationP() * rhs();
00464 
00465     // Step 2
00466     dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst);
00467 
00468     // Step 3
00469     dec().matrixLU().template triangularView<Upper>().solveInPlace(dst);
00470   }
00471 };
00472 
00473 } // end namespace internal
00474 
00475 /******** MatrixBase methods *******/
00476 
00483 template<typename Derived>
00484 inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
00485 MatrixBase<Derived>::partialPivLu() const
00486 {
00487   return PartialPivLU<PlainObject>(eval());
00488 }
00489 
00490 #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
00491 
00499 template<typename Derived>
00500 inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
00501 MatrixBase<Derived>::lu() const
00502 {
00503   return PartialPivLU<PlainObject>(eval());
00504 }
00505 #endif
00506 
00507 } // end namespace Eigen
00508 
00509 #endif // EIGEN_PARTIALLU_H


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:34:01