MatrixSquareRoot.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 #ifndef EIGEN_MATRIX_SQUARE_ROOT
00011 #define EIGEN_MATRIX_SQUARE_ROOT
00012 
00013 namespace Eigen { 
00014 
00026 template <typename MatrixType>
00027 class MatrixSquareRootQuasiTriangular
00028 {
00029   public:
00030 
00039     MatrixSquareRootQuasiTriangular(const MatrixType& A) 
00040       : m_A(A) 
00041     {
00042       eigen_assert(A.rows() == A.cols());
00043     }
00044     
00053     template <typename ResultType> void compute(ResultType &result);    
00054     
00055   private:
00056     typedef typename MatrixType::Index Index;
00057     typedef typename MatrixType::Scalar Scalar;
00058     
00059     void computeDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
00060     void computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
00061     void compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i);
00062     void compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
00063                                   typename MatrixType::Index i, typename MatrixType::Index j);
00064     void compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
00065                                   typename MatrixType::Index i, typename MatrixType::Index j);
00066     void compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
00067                                   typename MatrixType::Index i, typename MatrixType::Index j);
00068     void compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
00069                                   typename MatrixType::Index i, typename MatrixType::Index j);
00070   
00071     template <typename SmallMatrixType>
00072     static void solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A, 
00073                                      const SmallMatrixType& B, const SmallMatrixType& C);
00074   
00075     const MatrixType& m_A;
00076 };
00077 
00078 template <typename MatrixType>
00079 template <typename ResultType> 
00080 void MatrixSquareRootQuasiTriangular<MatrixType>::compute(ResultType &result)
00081 {
00082   result.resize(m_A.rows(), m_A.cols());
00083   computeDiagonalPartOfSqrt(result, m_A);
00084   computeOffDiagonalPartOfSqrt(result, m_A);
00085 }
00086 
00087 // pre:  T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
00088 // post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
00089 template <typename MatrixType>
00090 void MatrixSquareRootQuasiTriangular<MatrixType>::computeDiagonalPartOfSqrt(MatrixType& sqrtT, 
00091                                                                           const MatrixType& T)
00092 {
00093   using std::sqrt;
00094   const Index size = m_A.rows();
00095   for (Index i = 0; i < size; i++) {
00096     if (i == size - 1 || T.coeff(i+1, i) == 0) {
00097       eigen_assert(T(i,i) >= 0);
00098       sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i));
00099     }
00100     else {
00101       compute2x2diagonalBlock(sqrtT, T, i);
00102       ++i;
00103     }
00104   }
00105 }
00106 
00107 // pre:  T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
00108 // post: sqrtT is the square root of T.
00109 template <typename MatrixType>
00110 void MatrixSquareRootQuasiTriangular<MatrixType>::computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, 
00111                                                                              const MatrixType& T)
00112 {
00113   const Index size = m_A.rows();
00114   for (Index j = 1; j < size; j++) {
00115       if (T.coeff(j, j-1) != 0)  // if T(j-1:j, j-1:j) is a 2-by-2 block
00116         continue;
00117     for (Index i = j-1; i >= 0; i--) {
00118       if (i > 0 && T.coeff(i, i-1) != 0)  // if T(i-1:i, i-1:i) is a 2-by-2 block
00119         continue;
00120       bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
00121       bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
00122       if (iBlockIs2x2 && jBlockIs2x2) 
00123         compute2x2offDiagonalBlock(sqrtT, T, i, j);
00124       else if (iBlockIs2x2 && !jBlockIs2x2) 
00125         compute2x1offDiagonalBlock(sqrtT, T, i, j);
00126       else if (!iBlockIs2x2 && jBlockIs2x2) 
00127         compute1x2offDiagonalBlock(sqrtT, T, i, j);
00128       else if (!iBlockIs2x2 && !jBlockIs2x2) 
00129         compute1x1offDiagonalBlock(sqrtT, T, i, j);
00130     }
00131   }
00132 }
00133 
00134 // pre:  T.block(i,i,2,2) has complex conjugate eigenvalues
00135 // post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
00136 template <typename MatrixType>
00137 void MatrixSquareRootQuasiTriangular<MatrixType>
00138      ::compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i)
00139 {
00140   // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
00141   //       in EigenSolver. If we expose it, we could call it directly from here.
00142   Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
00143   EigenSolver<Matrix<Scalar,2,2> > es(block);
00144   sqrtT.template block<2,2>(i,i)
00145     = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real();
00146 }
00147 
00148 // pre:  block structure of T is such that (i,j) is a 1x1 block,
00149 //       all blocks of sqrtT to left of and below (i,j) are correct
00150 // post: sqrtT(i,j) has the correct value
00151 template <typename MatrixType>
00152 void MatrixSquareRootQuasiTriangular<MatrixType>
00153      ::compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
00154                                   typename MatrixType::Index i, typename MatrixType::Index j)
00155 {
00156   Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
00157   sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
00158 }
00159 
00160 // similar to compute1x1offDiagonalBlock()
00161 template <typename MatrixType>
00162 void MatrixSquareRootQuasiTriangular<MatrixType>
00163      ::compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
00164                                   typename MatrixType::Index i, typename MatrixType::Index j)
00165 {
00166   Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
00167   if (j-i > 1)
00168     rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2);
00169   Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity();
00170   A += sqrtT.template block<2,2>(j,j).transpose();
00171   sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose());
00172 }
00173 
00174 // similar to compute1x1offDiagonalBlock()
00175 template <typename MatrixType>
00176 void MatrixSquareRootQuasiTriangular<MatrixType>
00177      ::compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
00178                                   typename MatrixType::Index i, typename MatrixType::Index j)
00179 {
00180   Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
00181   if (j-i > 2)
00182     rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1);
00183   Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity();
00184   A += sqrtT.template block<2,2>(i,i);
00185   sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs);
00186 }
00187 
00188 // similar to compute1x1offDiagonalBlock()
00189 template <typename MatrixType>
00190 void MatrixSquareRootQuasiTriangular<MatrixType>
00191      ::compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
00192                                   typename MatrixType::Index i, typename MatrixType::Index j)
00193 {
00194   Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
00195   Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
00196   Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
00197   if (j-i > 2)
00198     C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
00199   Matrix<Scalar,2,2> X;
00200   solveAuxiliaryEquation(X, A, B, C);
00201   sqrtT.template block<2,2>(i,j) = X;
00202 }
00203 
00204 // solves the equation A X + X B = C where all matrices are 2-by-2
00205 template <typename MatrixType>
00206 template <typename SmallMatrixType>
00207 void MatrixSquareRootQuasiTriangular<MatrixType>
00208      ::solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
00209                               const SmallMatrixType& B, const SmallMatrixType& C)
00210 {
00211   EIGEN_STATIC_ASSERT((internal::is_same<SmallMatrixType, Matrix<Scalar,2,2> >::value),
00212                       EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT);
00213 
00214   Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
00215   coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0);
00216   coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1);
00217   coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0);
00218   coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1);
00219   coeffMatrix.coeffRef(0,1) = B.coeff(1,0);
00220   coeffMatrix.coeffRef(0,2) = A.coeff(0,1);
00221   coeffMatrix.coeffRef(1,0) = B.coeff(0,1);
00222   coeffMatrix.coeffRef(1,3) = A.coeff(0,1);
00223   coeffMatrix.coeffRef(2,0) = A.coeff(1,0);
00224   coeffMatrix.coeffRef(2,3) = B.coeff(1,0);
00225   coeffMatrix.coeffRef(3,1) = A.coeff(1,0);
00226   coeffMatrix.coeffRef(3,2) = B.coeff(0,1);
00227   
00228   Matrix<Scalar,4,1> rhs;
00229   rhs.coeffRef(0) = C.coeff(0,0);
00230   rhs.coeffRef(1) = C.coeff(0,1);
00231   rhs.coeffRef(2) = C.coeff(1,0);
00232   rhs.coeffRef(3) = C.coeff(1,1);
00233   
00234   Matrix<Scalar,4,1> result;
00235   result = coeffMatrix.fullPivLu().solve(rhs);
00236 
00237   X.coeffRef(0,0) = result.coeff(0);
00238   X.coeffRef(0,1) = result.coeff(1);
00239   X.coeffRef(1,0) = result.coeff(2);
00240   X.coeffRef(1,1) = result.coeff(3);
00241 }
00242 
00243 
00255 template <typename MatrixType>
00256 class MatrixSquareRootTriangular
00257 {
00258   public:
00259     MatrixSquareRootTriangular(const MatrixType& A) 
00260       : m_A(A) 
00261     {
00262       eigen_assert(A.rows() == A.cols());
00263     }
00264 
00274     template <typename ResultType> void compute(ResultType &result);    
00275 
00276  private:
00277     const MatrixType& m_A;
00278 };
00279 
00280 template <typename MatrixType>
00281 template <typename ResultType> 
00282 void MatrixSquareRootTriangular<MatrixType>::compute(ResultType &result)
00283 {
00284   using std::sqrt;
00285 
00286   // Compute square root of m_A and store it in upper triangular part of result
00287   // This uses that the square root of triangular matrices can be computed directly.
00288   result.resize(m_A.rows(), m_A.cols());
00289   typedef typename MatrixType::Index Index;
00290   for (Index i = 0; i < m_A.rows(); i++) {
00291     result.coeffRef(i,i) = sqrt(m_A.coeff(i,i));
00292   }
00293   for (Index j = 1; j < m_A.cols(); j++) {
00294     for (Index i = j-1; i >= 0; i--) {
00295       typedef typename MatrixType::Scalar Scalar;
00296       // if i = j-1, then segment has length 0 so tmp = 0
00297       Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
00298       // denominator may be zero if original matrix is singular
00299       result.coeffRef(i,j) = (m_A.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
00300     }
00301   }
00302 }
00303 
00304 
00312 template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
00313 class MatrixSquareRoot
00314 {
00315   public:
00316 
00324     MatrixSquareRoot(const MatrixType& A); 
00325     
00333     template <typename ResultType> void compute(ResultType &result);    
00334 };
00335 
00336 
00337 // ********** Partial specialization for real matrices **********
00338 
00339 template <typename MatrixType>
00340 class MatrixSquareRoot<MatrixType, 0>
00341 {
00342   public:
00343 
00344     MatrixSquareRoot(const MatrixType& A) 
00345       : m_A(A) 
00346     {  
00347       eigen_assert(A.rows() == A.cols());
00348     }
00349   
00350     template <typename ResultType> void compute(ResultType &result)
00351     {
00352       // Compute Schur decomposition of m_A
00353       const RealSchur<MatrixType> schurOfA(m_A);  
00354       const MatrixType& T = schurOfA.matrixT();
00355       const MatrixType& U = schurOfA.matrixU();
00356     
00357       // Compute square root of T
00358       MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.cols());
00359       MatrixSquareRootQuasiTriangular<MatrixType>(T).compute(sqrtT);
00360     
00361       // Compute square root of m_A
00362       result = U * sqrtT * U.adjoint();
00363     }
00364     
00365   private:
00366     const MatrixType& m_A;
00367 };
00368 
00369 
00370 // ********** Partial specialization for complex matrices **********
00371 
00372 template <typename MatrixType>
00373 class MatrixSquareRoot<MatrixType, 1>
00374 {
00375   public:
00376 
00377     MatrixSquareRoot(const MatrixType& A) 
00378       : m_A(A) 
00379     {  
00380       eigen_assert(A.rows() == A.cols());
00381     }
00382   
00383     template <typename ResultType> void compute(ResultType &result)
00384     {
00385       // Compute Schur decomposition of m_A
00386       const ComplexSchur<MatrixType> schurOfA(m_A);  
00387       const MatrixType& T = schurOfA.matrixT();
00388       const MatrixType& U = schurOfA.matrixU();
00389     
00390       // Compute square root of T
00391       MatrixType sqrtT;
00392       MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
00393     
00394       // Compute square root of m_A
00395       result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
00396     }
00397     
00398   private:
00399     const MatrixType& m_A;
00400 };
00401 
00402 
00415 template<typename Derived> class MatrixSquareRootReturnValue
00416 : public ReturnByValue<MatrixSquareRootReturnValue<Derived> >
00417 {
00418     typedef typename Derived::Index Index;
00419   public:
00425     MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { }
00426 
00432     template <typename ResultType>
00433     inline void evalTo(ResultType& result) const
00434     {
00435       const typename Derived::PlainObject srcEvaluated = m_src.eval();
00436       MatrixSquareRoot<typename Derived::PlainObject> me(srcEvaluated);
00437       me.compute(result);
00438     }
00439 
00440     Index rows() const { return m_src.rows(); }
00441     Index cols() const { return m_src.cols(); }
00442 
00443   protected:
00444     const Derived& m_src;
00445   private:
00446     MatrixSquareRootReturnValue& operator=(const MatrixSquareRootReturnValue&);
00447 };
00448 
00449 namespace internal {
00450 template<typename Derived>
00451 struct traits<MatrixSquareRootReturnValue<Derived> >
00452 {
00453   typedef typename Derived::PlainObject ReturnType;
00454 };
00455 }
00456 
00457 template <typename Derived>
00458 const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
00459 {
00460   eigen_assert(rows() == cols());
00461   return MatrixSquareRootReturnValue<Derived>(derived());
00462 }
00463 
00464 } // end namespace Eigen
00465 
00466 #endif // EIGEN_MATRIX_FUNCTION


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:33:15