StableNorm.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 #ifndef EIGEN_STABLENORM_H
00011 #define EIGEN_STABLENORM_H
00012 
00013 namespace Eigen { 
00014 
00015 namespace internal {
00016 
00017 template<typename ExpressionType, typename Scalar>
00018 inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
00019 {
00020   using std::max;
00021   Scalar maxCoeff = bl.cwiseAbs().maxCoeff();
00022   
00023   if (maxCoeff>scale)
00024   {
00025     ssq = ssq * numext::abs2(scale/maxCoeff);
00026     Scalar tmp = Scalar(1)/maxCoeff;
00027     if(tmp > NumTraits<Scalar>::highest())
00028     {
00029       invScale = NumTraits<Scalar>::highest();
00030       scale = Scalar(1)/invScale;
00031     }
00032     else
00033     {
00034       scale = maxCoeff;
00035       invScale = tmp;
00036     }
00037   }
00038   
00039   // TODO if the maxCoeff is much much smaller than the current scale,
00040   // then we can neglect this sub vector
00041   if(scale>Scalar(0)) // if scale==0, then bl is 0 
00042     ssq += (bl*invScale).squaredNorm();
00043 }
00044 
00045 template<typename Derived>
00046 inline typename NumTraits<typename traits<Derived>::Scalar>::Real
00047 blueNorm_impl(const EigenBase<Derived>& _vec)
00048 {
00049   typedef typename Derived::RealScalar RealScalar;  
00050   typedef typename Derived::Index Index;
00051   using std::pow;
00052   using std::min;
00053   using std::max;
00054   using std::sqrt;
00055   using std::abs;
00056   const Derived& vec(_vec.derived());
00057   static bool initialized = false;
00058   static RealScalar b1, b2, s1m, s2m, overfl, rbig, relerr;
00059   if(!initialized)
00060   {
00061     int ibeta, it, iemin, iemax, iexp;
00062     RealScalar eps;
00063     // This program calculates the machine-dependent constants
00064     // bl, b2, slm, s2m, relerr overfl
00065     // from the "basic" machine-dependent numbers
00066     // nbig, ibeta, it, iemin, iemax, rbig.
00067     // The following define the basic machine-dependent constants.
00068     // For portability, the PORT subprograms "ilmaeh" and "rlmach"
00069     // are used. For any specific computer, each of the assignment
00070     // statements can be replaced
00071     ibeta = std::numeric_limits<RealScalar>::radix;                 // base for floating-point numbers
00072     it    = std::numeric_limits<RealScalar>::digits;                // number of base-beta digits in mantissa
00073     iemin = std::numeric_limits<RealScalar>::min_exponent;          // minimum exponent
00074     iemax = std::numeric_limits<RealScalar>::max_exponent;          // maximum exponent
00075     rbig  = (std::numeric_limits<RealScalar>::max)();               // largest floating-point number
00076 
00077     iexp  = -((1-iemin)/2);
00078     b1    = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));    // lower boundary of midrange
00079     iexp  = (iemax + 1 - it)/2;
00080     b2    = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));    // upper boundary of midrange
00081 
00082     iexp  = (2-iemin)/2;
00083     s1m   = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));    // scaling factor for lower range
00084     iexp  = - ((iemax+it)/2);
00085     s2m   = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));    // scaling factor for upper range
00086 
00087     overfl  = rbig*s2m;                                             // overflow boundary for abig
00088     eps     = RealScalar(pow(double(ibeta), 1-it));
00089     relerr  = sqrt(eps);                                            // tolerance for neglecting asml
00090     initialized = true;
00091   }
00092   Index n = vec.size();
00093   RealScalar ab2 = b2 / RealScalar(n);
00094   RealScalar asml = RealScalar(0);
00095   RealScalar amed = RealScalar(0);
00096   RealScalar abig = RealScalar(0);
00097   for(typename Derived::InnerIterator it(vec, 0); it; ++it)
00098   {
00099     RealScalar ax = abs(it.value());
00100     if(ax > ab2)     abig += numext::abs2(ax*s2m);
00101     else if(ax < b1) asml += numext::abs2(ax*s1m);
00102     else             amed += numext::abs2(ax);
00103   }
00104   if(abig > RealScalar(0))
00105   {
00106     abig = sqrt(abig);
00107     if(abig > overfl)
00108     {
00109       return rbig;
00110     }
00111     if(amed > RealScalar(0))
00112     {
00113       abig = abig/s2m;
00114       amed = sqrt(amed);
00115     }
00116     else
00117       return abig/s2m;
00118   }
00119   else if(asml > RealScalar(0))
00120   {
00121     if (amed > RealScalar(0))
00122     {
00123       abig = sqrt(amed);
00124       amed = sqrt(asml) / s1m;
00125     }
00126     else
00127       return sqrt(asml)/s1m;
00128   }
00129   else
00130     return sqrt(amed);
00131   asml = (min)(abig, amed);
00132   abig = (max)(abig, amed);
00133   if(asml <= abig*relerr)
00134     return abig;
00135   else
00136     return abig * sqrt(RealScalar(1) + numext::abs2(asml/abig));
00137 }
00138 
00139 } // end namespace internal
00140 
00151 template<typename Derived>
00152 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
00153 MatrixBase<Derived>::stableNorm() const
00154 {
00155   using std::min;
00156   using std::sqrt;
00157   const Index blockSize = 4096;
00158   RealScalar scale(0);
00159   RealScalar invScale(1);
00160   RealScalar ssq(0); // sum of square
00161   enum {
00162     Alignment = (int(Flags)&DirectAccessBit) || (int(Flags)&AlignedBit) ? 1 : 0
00163   };
00164   Index n = size();
00165   Index bi = internal::first_aligned(derived());
00166   if (bi>0)
00167     internal::stable_norm_kernel(this->head(bi), ssq, scale, invScale);
00168   for (; bi<n; bi+=blockSize)
00169     internal::stable_norm_kernel(this->segment(bi,(min)(blockSize, n - bi)).template forceAlignedAccessIf<Alignment>(), ssq, scale, invScale);
00170   return scale * sqrt(ssq);
00171 }
00172 
00182 template<typename Derived>
00183 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
00184 MatrixBase<Derived>::blueNorm() const
00185 {
00186   return internal::blueNorm_impl(*this);
00187 }
00188 
00194 template<typename Derived>
00195 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
00196 MatrixBase<Derived>::hypotNorm() const
00197 {
00198   return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>());
00199 }
00200 
00201 } // end namespace Eigen
00202 
00203 #endif // EIGEN_STABLENORM_H


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:36:32