Redux.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
00006 //
00007 // This Source Code Form is subject to the terms of the Mozilla
00008 // Public License v. 2.0. If a copy of the MPL was not distributed
00009 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00010 
00011 #ifndef EIGEN_REDUX_H
00012 #define EIGEN_REDUX_H
00013 
00014 namespace Eigen { 
00015 
00016 namespace internal {
00017 
00018 // TODO
00019 //  * implement other kind of vectorization
00020 //  * factorize code
00021 
00022 /***************************************************************************
00023 * Part 1 : the logic deciding a strategy for vectorization and unrolling
00024 ***************************************************************************/
00025 
00026 template<typename Func, typename Derived>
00027 struct redux_traits
00028 {
00029 public:
00030   enum {
00031     PacketSize = packet_traits<typename Derived::Scalar>::size,
00032     InnerMaxSize = int(Derived::IsRowMajor)
00033                  ? Derived::MaxColsAtCompileTime
00034                  : Derived::MaxRowsAtCompileTime
00035   };
00036 
00037   enum {
00038     MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit)
00039                   && (functor_traits<Func>::PacketAccess),
00040     MayLinearVectorize = MightVectorize && (int(Derived::Flags)&LinearAccessBit),
00041     MaySliceVectorize  = MightVectorize && int(InnerMaxSize)>=3*PacketSize
00042   };
00043 
00044 public:
00045   enum {
00046     Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
00047               : int(MaySliceVectorize)  ? int(SliceVectorizedTraversal)
00048                                         : int(DefaultTraversal)
00049   };
00050 
00051 public:
00052   enum {
00053     Cost = (  Derived::SizeAtCompileTime == Dynamic
00054            || Derived::CoeffReadCost == Dynamic
00055            || (Derived::SizeAtCompileTime!=1 && functor_traits<Func>::Cost == Dynamic)
00056            ) ? Dynamic
00057            : Derived::SizeAtCompileTime * Derived::CoeffReadCost
00058                + (Derived::SizeAtCompileTime-1) * functor_traits<Func>::Cost,
00059     UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize))
00060   };
00061 
00062 public:
00063   enum {
00064     Unrolling = Cost != Dynamic && Cost <= UnrollingLimit
00065               ? CompleteUnrolling
00066               : NoUnrolling
00067   };
00068 };
00069 
00070 /***************************************************************************
00071 * Part 2 : unrollers
00072 ***************************************************************************/
00073 
00074 /*** no vectorization ***/
00075 
00076 template<typename Func, typename Derived, int Start, int Length>
00077 struct redux_novec_unroller
00078 {
00079   enum {
00080     HalfLength = Length/2
00081   };
00082 
00083   typedef typename Derived::Scalar Scalar;
00084 
00085   static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
00086   {
00087     return func(redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
00088                 redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func));
00089   }
00090 };
00091 
00092 template<typename Func, typename Derived, int Start>
00093 struct redux_novec_unroller<Func, Derived, Start, 1>
00094 {
00095   enum {
00096     outer = Start / Derived::InnerSizeAtCompileTime,
00097     inner = Start % Derived::InnerSizeAtCompileTime
00098   };
00099 
00100   typedef typename Derived::Scalar Scalar;
00101 
00102   static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func&)
00103   {
00104     return mat.coeffByOuterInner(outer, inner);
00105   }
00106 };
00107 
00108 // This is actually dead code and will never be called. It is required
00109 // to prevent false warnings regarding failed inlining though
00110 // for 0 length run() will never be called at all.
00111 template<typename Func, typename Derived, int Start>
00112 struct redux_novec_unroller<Func, Derived, Start, 0>
00113 {
00114   typedef typename Derived::Scalar Scalar;
00115   static EIGEN_STRONG_INLINE Scalar run(const Derived&, const Func&) { return Scalar(); }
00116 };
00117 
00118 /*** vectorization ***/
00119 
00120 template<typename Func, typename Derived, int Start, int Length>
00121 struct redux_vec_unroller
00122 {
00123   enum {
00124     PacketSize = packet_traits<typename Derived::Scalar>::size,
00125     HalfLength = Length/2
00126   };
00127 
00128   typedef typename Derived::Scalar Scalar;
00129   typedef typename packet_traits<Scalar>::type PacketScalar;
00130 
00131   static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func& func)
00132   {
00133     return func.packetOp(
00134             redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
00135             redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) );
00136   }
00137 };
00138 
00139 template<typename Func, typename Derived, int Start>
00140 struct redux_vec_unroller<Func, Derived, Start, 1>
00141 {
00142   enum {
00143     index = Start * packet_traits<typename Derived::Scalar>::size,
00144     outer = index / int(Derived::InnerSizeAtCompileTime),
00145     inner = index % int(Derived::InnerSizeAtCompileTime),
00146     alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned
00147   };
00148 
00149   typedef typename Derived::Scalar Scalar;
00150   typedef typename packet_traits<Scalar>::type PacketScalar;
00151 
00152   static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func&)
00153   {
00154     return mat.template packetByOuterInner<alignment>(outer, inner);
00155   }
00156 };
00157 
00158 /***************************************************************************
00159 * Part 3 : implementation of all cases
00160 ***************************************************************************/
00161 
00162 template<typename Func, typename Derived,
00163          int Traversal = redux_traits<Func, Derived>::Traversal,
00164          int Unrolling = redux_traits<Func, Derived>::Unrolling
00165 >
00166 struct redux_impl;
00167 
00168 template<typename Func, typename Derived>
00169 struct redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>
00170 {
00171   typedef typename Derived::Scalar Scalar;
00172   typedef typename Derived::Index Index;
00173   static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func)
00174   {
00175     eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
00176     Scalar res;
00177     res = mat.coeffByOuterInner(0, 0);
00178     for(Index i = 1; i < mat.innerSize(); ++i)
00179       res = func(res, mat.coeffByOuterInner(0, i));
00180     for(Index i = 1; i < mat.outerSize(); ++i)
00181       for(Index j = 0; j < mat.innerSize(); ++j)
00182         res = func(res, mat.coeffByOuterInner(i, j));
00183     return res;
00184   }
00185 };
00186 
00187 template<typename Func, typename Derived>
00188 struct redux_impl<Func,Derived, DefaultTraversal, CompleteUnrolling>
00189   : public redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime>
00190 {};
00191 
00192 template<typename Func, typename Derived>
00193 struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
00194 {
00195   typedef typename Derived::Scalar Scalar;
00196   typedef typename packet_traits<Scalar>::type PacketScalar;
00197   typedef typename Derived::Index Index;
00198 
00199   static Scalar run(const Derived& mat, const Func& func)
00200   {
00201     const Index size = mat.size();
00202     eigen_assert(size && "you are using an empty matrix");
00203     const Index packetSize = packet_traits<Scalar>::size;
00204     const Index alignedStart = internal::first_aligned(mat);
00205     enum {
00206       alignment = bool(Derived::Flags & DirectAccessBit) || bool(Derived::Flags & AlignedBit)
00207                 ? Aligned : Unaligned
00208     };
00209     const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize);
00210     const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize);
00211     const Index alignedEnd2 = alignedStart + alignedSize2;
00212     const Index alignedEnd  = alignedStart + alignedSize;
00213     Scalar res;
00214     if(alignedSize)
00215     {
00216       PacketScalar packet_res0 = mat.template packet<alignment>(alignedStart);
00217       if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop
00218       {
00219         PacketScalar packet_res1 = mat.template packet<alignment>(alignedStart+packetSize);
00220         for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize)
00221         {
00222           packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment>(index));
00223           packet_res1 = func.packetOp(packet_res1, mat.template packet<alignment>(index+packetSize));
00224         }
00225 
00226         packet_res0 = func.packetOp(packet_res0,packet_res1);
00227         if(alignedEnd>alignedEnd2)
00228           packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment>(alignedEnd2));
00229       }
00230       res = func.predux(packet_res0);
00231 
00232       for(Index index = 0; index < alignedStart; ++index)
00233         res = func(res,mat.coeff(index));
00234 
00235       for(Index index = alignedEnd; index < size; ++index)
00236         res = func(res,mat.coeff(index));
00237     }
00238     else // too small to vectorize anything.
00239          // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
00240     {
00241       res = mat.coeff(0);
00242       for(Index index = 1; index < size; ++index)
00243         res = func(res,mat.coeff(index));
00244     }
00245 
00246     return res;
00247   }
00248 };
00249 
00250 template<typename Func, typename Derived>
00251 struct redux_impl<Func, Derived, SliceVectorizedTraversal, NoUnrolling>
00252 {
00253   typedef typename Derived::Scalar Scalar;
00254   typedef typename packet_traits<Scalar>::type PacketScalar;
00255   typedef typename Derived::Index Index;
00256 
00257   static Scalar run(const Derived& mat, const Func& func)
00258   {
00259     eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
00260     const Index innerSize = mat.innerSize();
00261     const Index outerSize = mat.outerSize();
00262     enum {
00263       packetSize = packet_traits<Scalar>::size
00264     };
00265     const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize;
00266     Scalar res;
00267     if(packetedInnerSize)
00268     {
00269       PacketScalar packet_res = mat.template packet<Unaligned>(0,0);
00270       for(Index j=0; j<outerSize; ++j)
00271         for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize))
00272           packet_res = func.packetOp(packet_res, mat.template packetByOuterInner<Unaligned>(j,i));
00273 
00274       res = func.predux(packet_res);
00275       for(Index j=0; j<outerSize; ++j)
00276         for(Index i=packetedInnerSize; i<innerSize; ++i)
00277           res = func(res, mat.coeffByOuterInner(j,i));
00278     }
00279     else // too small to vectorize anything.
00280          // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
00281     {
00282       res = redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>::run(mat, func);
00283     }
00284 
00285     return res;
00286   }
00287 };
00288 
00289 template<typename Func, typename Derived>
00290 struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
00291 {
00292   typedef typename Derived::Scalar Scalar;
00293   typedef typename packet_traits<Scalar>::type PacketScalar;
00294   enum {
00295     PacketSize = packet_traits<Scalar>::size,
00296     Size = Derived::SizeAtCompileTime,
00297     VectorizedSize = (Size / PacketSize) * PacketSize
00298   };
00299   static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func)
00300   {
00301     eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
00302     Scalar res = func.predux(redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func));
00303     if (VectorizedSize != Size)
00304       res = func(res,redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func));
00305     return res;
00306   }
00307 };
00308 
00309 } // end namespace internal
00310 
00311 /***************************************************************************
00312 * Part 4 : public API
00313 ***************************************************************************/
00314 
00315 
00323 template<typename Derived>
00324 template<typename Func>
00325 EIGEN_STRONG_INLINE typename internal::result_of<Func(typename internal::traits<Derived>::Scalar)>::type
00326 DenseBase<Derived>::redux(const Func& func) const
00327 {
00328   typedef typename internal::remove_all<typename Derived::Nested>::type ThisNested;
00329   return internal::redux_impl<Func, ThisNested>
00330             ::run(derived(), func);
00331 }
00332 
00336 template<typename Derived>
00337 EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
00338 DenseBase<Derived>::minCoeff() const
00339 {
00340   return this->redux(Eigen::internal::scalar_min_op<Scalar>());
00341 }
00342 
00346 template<typename Derived>
00347 EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
00348 DenseBase<Derived>::maxCoeff() const
00349 {
00350   return this->redux(Eigen::internal::scalar_max_op<Scalar>());
00351 }
00352 
00357 template<typename Derived>
00358 EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
00359 DenseBase<Derived>::sum() const
00360 {
00361   if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
00362     return Scalar(0);
00363   return this->redux(Eigen::internal::scalar_sum_op<Scalar>());
00364 }
00365 
00370 template<typename Derived>
00371 EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
00372 DenseBase<Derived>::mean() const
00373 {
00374   return Scalar(this->redux(Eigen::internal::scalar_sum_op<Scalar>())) / Scalar(this->size());
00375 }
00376 
00384 template<typename Derived>
00385 EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
00386 DenseBase<Derived>::prod() const
00387 {
00388   if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
00389     return Scalar(1);
00390   return this->redux(Eigen::internal::scalar_product_op<Scalar>());
00391 }
00392 
00399 template<typename Derived>
00400 EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
00401 MatrixBase<Derived>::trace() const
00402 {
00403   return derived().diagonal().sum();
00404 }
00405 
00406 } // end namespace Eigen
00407 
00408 #endif // EIGEN_REDUX_H


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:35:06