Base class for all dense matrices, vectors, and expressions. More...
#include <MatrixBase.h>
Classes | |
struct | ConstDiagonalIndexReturnType |
struct | ConstSelfAdjointViewReturnType |
struct | ConstTriangularViewReturnType |
struct | cross_product_return_type |
struct | DiagonalIndexReturnType |
struct | SelfAdjointViewReturnType |
struct | TriangularViewReturnType |
Protected Member Functions | |
template<typename OtherDerived > | |
Derived & | operator+= (const ArrayBase< OtherDerived > &) |
template<typename OtherDerived > | |
Derived & | operator-= (const ArrayBase< OtherDerived > &) |
Protected Member Functions inherited from Eigen::DenseBase< Derived > | |
EIGEN_DEVICE_FUNC | DenseBase () |
template<typename Indices > | |
IvcColType< Indices >::type | ivcCol (const Indices &indices) const |
template<typename Indices > | |
IvcRowType< Indices >::type | ivcRow (const Indices &indices) const |
template<typename Indices > | |
IvcColType< Indices >::type | ivcSize (const Indices &indices) const |
Private Member Functions | |
EIGEN_DEVICE_FUNC | MatrixBase (int) |
EIGEN_DEVICE_FUNC | MatrixBase (int, int) |
template<typename OtherDerived > | |
EIGEN_DEVICE_FUNC | MatrixBase (const MatrixBase< OtherDerived > &) |
Additional Inherited Members | |
Public Attributes inherited from Eigen::DenseBase< Derived > | |
EIGEN_DEPRECATED typedef CwiseNullaryOp< internal::linspaced_op< Scalar >, PlainObject > | SequentialLinSpacedReturnType |
Protected Types inherited from Eigen::DenseBase< Derived > | |
typedef internal::IndexedViewCompatibleType< Index, 1 >::type | IvcIndex |
Related Functions inherited from Eigen::DenseBase< Derived > | |
template<typename Derived > | |
std::ostream & | operator<< (std::ostream &s, const DenseBase< Derived > &m) |
Base class for all dense matrices, vectors, and expressions.
This class is the base that is inherited by all matrix, vector, and related expression types. Most of the Eigen API is contained in this class, and its base classes. Other important classes for the Eigen API are Matrix, and VectorwiseOp.
Note that some methods are defined in other modules such as the LU_Module LU module for all functions related to matrix inversions.
Derived | is the derived type, e.g. a matrix type, or an expression, etc. |
When writing a function taking Eigen objects as argument, if you want your function to take as argument any matrix, vector, or expression, just let it take a MatrixBase argument. As an example, here is a function printFirstRow which, given a matrix, vector, or expression x, prints the first row of x.
This class can be extended with the help of the plugin mechanism described on the page Extending MatrixBase (and other classes) by defining the preprocessor symbol EIGEN_MATRIXBASE_PLUGIN
.
Definition at line 48 of file MatrixBase.h.
Definition at line 113 of file MatrixBase.h.
typedef DenseBase<Derived> Eigen::MatrixBase< Derived >::Base |
Definition at line 60 of file MatrixBase.h.
typedef Block<const CwiseNullaryOp<internal::scalar_identity_op<Scalar>, SquareMatrixType>, internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime> Eigen::MatrixBase< Derived >::BasisReturnType |
Definition at line 121 of file MatrixBase.h.
typedef Base::CoeffReturnType Eigen::MatrixBase< Derived >::CoeffReturnType |
Definition at line 85 of file MatrixBase.h.
typedef Base::ColXpr Eigen::MatrixBase< Derived >::ColXpr |
Definition at line 88 of file MatrixBase.h.
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,PlainObject> Eigen::MatrixBase< Derived >::ConstantReturnType |
Definition at line 108 of file MatrixBase.h.
typedef internal::add_const<Diagonal<const Derived,DynamicIndex> >::type Eigen::MatrixBase< Derived >::ConstDiagonalDynamicIndexReturnType |
Definition at line 225 of file MatrixBase.h.
typedef internal::add_const<Diagonal<const Derived> >::type Eigen::MatrixBase< Derived >::ConstDiagonalReturnType |
Definition at line 209 of file MatrixBase.h.
typedef Block<const Derived, internal::traits<Derived>::ColsAtCompileTime==1 ? SizeMinusOne : 1, internal::traits<Derived>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> Eigen::MatrixBase< Derived >::ConstStartMinusOne |
Definition at line 414 of file MatrixBase.h.
typedef Base::ConstTransposeReturnType Eigen::MatrixBase< Derived >::ConstTransposeReturnType |
Definition at line 86 of file MatrixBase.h.
typedef CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::CwiseAbs2ReturnType |
Definition at line 17 of file MatrixBase.h.
typedef CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::CwiseAbsReturnType |
Definition at line 16 of file MatrixBase.h.
typedef CwiseUnaryOp<internal::scalar_arg_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::CwiseArgReturnType |
Definition at line 18 of file MatrixBase.h.
typedef CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::CwiseInverseReturnType |
Definition at line 21 of file MatrixBase.h.
typedef CwiseBinaryOp<internal::scalar_cmp_op<Scalar,Scalar,internal::cmp_EQ>, const Derived, const ConstantReturnType> Eigen::MatrixBase< Derived >::CwiseScalarEqualReturnType |
Definition at line 137 of file MatrixBase.h.
typedef CwiseUnaryOp<internal::scalar_sign_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::CwiseSignReturnType |
Definition at line 20 of file MatrixBase.h.
typedef CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::CwiseSqrtReturnType |
Definition at line 19 of file MatrixBase.h.
typedef Diagonal<Derived,DynamicIndex> Eigen::MatrixBase< Derived >::DiagonalDynamicIndexReturnType |
Definition at line 224 of file MatrixBase.h.
typedef Diagonal<Derived> Eigen::MatrixBase< Derived >::DiagonalReturnType |
Definition at line 205 of file MatrixBase.h.
typedef Matrix<std::complex<RealScalar>, internal::traits<Derived>::ColsAtCompileTime, 1, ColMajor> Eigen::MatrixBase< Derived >::EigenvaluesReturnType |
Definition at line 115 of file MatrixBase.h.
typedef Homogeneous<Derived, HomogeneousReturnTypeDirection> Eigen::MatrixBase< Derived >::HomogeneousReturnType |
Definition at line 405 of file MatrixBase.h.
typedef CwiseNullaryOp<internal::scalar_identity_op<Scalar>,PlainObject> Eigen::MatrixBase< Derived >::IdentityReturnType |
Definition at line 117 of file MatrixBase.h.
typedef internal::packet_traits<Scalar>::type Eigen::MatrixBase< Derived >::PacketScalar |
Definition at line 57 of file MatrixBase.h.
typedef Base::PlainObject Eigen::MatrixBase< Derived >::PlainObject |
Definition at line 104 of file MatrixBase.h.
typedef NumTraits<Scalar>::Real Eigen::MatrixBase< Derived >::RealScalar |
Definition at line 58 of file MatrixBase.h.
typedef Base::RowXpr Eigen::MatrixBase< Derived >::RowXpr |
Definition at line 87 of file MatrixBase.h.
typedef internal::traits<Derived>::Scalar Eigen::MatrixBase< Derived >::Scalar |
Definition at line 56 of file MatrixBase.h.
typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime), EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> Eigen::MatrixBase< Derived >::SquareMatrixType |
type of the equivalent square matrix
Definition at line 96 of file MatrixBase.h.
typedef internal::stem_function<Scalar>::type Eigen::MatrixBase< Derived >::StemFunction |
Definition at line 458 of file MatrixBase.h.
typedef MatrixBase Eigen::MatrixBase< Derived >::StorageBaseType |
Definition at line 53 of file MatrixBase.h.
typedef internal::traits<Derived>::StorageIndex Eigen::MatrixBase< Derived >::StorageIndex |
Definition at line 55 of file MatrixBase.h.
typedef internal::traits<Derived>::StorageKind Eigen::MatrixBase< Derived >::StorageKind |
Definition at line 54 of file MatrixBase.h.
anonymous enum |
Enumerator | |
---|---|
HomogeneousReturnTypeDirection |
Definition at line 403 of file MatrixBase.h.
anonymous enum |
Enumerator | |
---|---|
SizeMinusOne |
Definition at line 409 of file MatrixBase.h.
|
explicitprivate |
|
private |
|
explicitprivate |
|
inline |
Example:
Output:
Definition at line 221 of file Transpose.h.
|
inline |
This is the "in place" version of adjoint(): it replaces *this
by its own transpose. Thus, doing
has the same effect on m as doing
and is faster and also safer because in the latter line of code, forgetting the eval() results in a bug caused by aliasing.
Notice however that this method is only useful if you want to replace a matrix by its own adjoint. If you just need the adjoint of a matrix, use adjoint().
*this
must be a resizable matrix. This excludes (non-square) fixed-size matrices, block-expressions and maps.Definition at line 375 of file Transpose.h.
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::applyHouseholderOnTheLeft | ( | const EssentialPart & | essential, |
const Scalar & | tau, | ||
Scalar * | workspace | ||
) |
Apply the elementary reflector H given by with from the left to a vector or matrix.
On input:
essential | the essential part of the vector v |
tau | the scaling factor of the Householder transformation |
workspace | a pointer to working space with at least this->cols() entries |
Definition at line 116 of file Householder.h.
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::applyHouseholderOnTheRight | ( | const EssentialPart & | essential, |
const Scalar & | tau, | ||
Scalar * | workspace | ||
) |
Apply the elementary reflector H given by with from the right to a vector or matrix.
On input:
essential | the essential part of the vector v |
tau | the scaling factor of the Householder transformation |
workspace | a pointer to working space with at least this->rows() entries |
Definition at line 154 of file Householder.h.
|
inline |
replaces *this
by other * *this
.
Example:
Output:
Definition at line 540 of file MatrixBase.h.
|
inline |
Applies the rotation in the plane j to the rows p and q of *this
, i.e., it computes B = J * B, with .
|
inline |
replaces *this
by *this
* other. It is equivalent to MatrixBase::operator*=().
Example:
Output:
Definition at line 528 of file MatrixBase.h.
|
inline |
Definition at line 319 of file MatrixBase.h.
|
inline |
Definition at line 322 of file MatrixBase.h.
|
inline |
Example:
Output:
Definition at line 325 of file DiagonalMatrix.h.
const PermutationWrapper< const Derived > Eigen::MatrixBase< Derived >::asPermutation | ( | ) | const |
Definition at line 592 of file PermutationMatrix.h.
|
inline |
|
inline |
*this
and other *this
and other The template parameter CustomBinaryOp is the type of the functor of the custom operator (see class CwiseBinaryOp for an example)
Here is an example illustrating the use of custom functors:
Output:
Definition at line 44 of file MatrixBase.h.
|
inline |
*this
using the Blue's algorithm. A Portable Fortran Program to Find the Euclidean Norm of a Vector, ACM TOMS, Vol 4, Issue 1, 1978.For architecture/scalar types without vectorization, this version is much faster than stableNorm(). Otherwise the stableNorm() is faster.
Definition at line 229 of file StableNorm.h.
|
inline |
*this
.Definition at line 667 of file ColPivHouseholderQR.h.
|
inline |
*this
.Definition at line 629 of file CompleteOrthogonalDecomposition.h.
|
inline |
Computation of matrix inverse and determinant, with invertibility check.
This is only for fixed-size square matrices of size up to 4x4.
Notice that it will trigger a copy of input matrix when trying to do the inverse in place.
inverse | Reference to the matrix in which to store the inverse. |
determinant | Reference to the variable in which to store the determinant. |
invertible | Reference to the bool variable in which to store whether the matrix is invertible. |
absDeterminantThreshold | Optional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold. |
Example:
Output:
Definition at line 377 of file InverseImpl.h.
|
inline |
Computation of matrix inverse, with invertibility check.
This is only for fixed-size square matrices of size up to 4x4.
Notice that it will trigger a copy of input matrix when trying to do the inverse in place.
inverse | Reference to the matrix in which to store the inverse. |
invertible | Reference to the bool variable in which to store whether the matrix is invertible. |
absDeterminantThreshold | Optional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold. |
Example:
Output:
Definition at line 418 of file InverseImpl.h.
|
inline |
|
inline |
*this
Example:
Output:
Definition at line 34 of file MatrixBase.h.
|
inline |
*this
Example:
Output:
Definition at line 47 of file MatrixBase.h.
|
inline |
*this
Example:
Output:
Definition at line 96 of file MatrixBase.h.
|
inline |
Example:
Output:
Definition at line 44 of file MatrixBase.h.
|
inline |
*this
and a scalar s Definition at line 150 of file MatrixBase.h.
|
inline |
Example:
Output:
Definition at line 85 of file MatrixBase.h.
|
inline |
Example:
Output:
Definition at line 105 of file MatrixBase.h.
|
inline |
Definition at line 116 of file MatrixBase.h.
|
inline |
Example:
Output:
Definition at line 79 of file MatrixBase.h.
|
inline |
Definition at line 90 of file MatrixBase.h.
|
inline |
Example:
Output:
Definition at line 64 of file MatrixBase.h.
|
inline |
Definition at line 451 of file MatrixBase.h.
|
inline |
Example:
Output:
Definition at line 132 of file MatrixBase.h.
|
inline |
Example:
Output:
Definition at line 71 of file MatrixBase.h.
|
inline |
Example:
Output:
Definition at line 60 of file MatrixBase.h.
|
inline |
Definition at line 108 of file Determinant.h.
|
inline |
*this
*this
is not required to be square.
Example:
Output:
*this
*this
is not required to be square.
The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.
Example:
Output:
Definition at line 187 of file Diagonal.h.
|
inline |
This is the const version of diagonal().
This is the const version of diagonal<int>().
Definition at line 195 of file Diagonal.h.
EIGEN_DEVICE_FUNC DiagonalIndexReturnType<Index>::Type Eigen::MatrixBase< Derived >::diagonal | ( | ) |
EIGEN_DEVICE_FUNC ConstDiagonalIndexReturnType<Index>::Type Eigen::MatrixBase< Derived >::diagonal | ( | ) | const |
|
inline |
*this
*this
is not required to be square.
The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.
Example:
Output:
Definition at line 213 of file Diagonal.h.
|
inline |
This is the const version of diagonal(Index).
Definition at line 221 of file Diagonal.h.
|
inline |
Definition at line 102 of file MatrixBase.h.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType Eigen::MatrixBase< Derived >::dot | ( | const MatrixBase< OtherDerived > & | other | ) | const |
Eigen::MatrixBase< Derived >::dot | ( | const MatrixBase< OtherDerived > & | other | ) | const |
|
inline |
Example:
Output:
Definition at line 23 of file MatrixBase.h.
typedef Eigen::MatrixBase< Derived >::EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE | ( | ConstStartMinusOne | , |
Scalar | , | ||
quotient | |||
) |
|
inline |
Computes the eigenvalues of a matrix.
This function computes the eigenvalues with the help of the EigenSolver class (for real matrices) or the ComplexEigenSolver class (for complex matrices).
The eigenvalues are repeated according to their algebraic multiplicity, so there are as many eigenvalues as rows in the matrix.
The SelfAdjointView class provides a better algorithm for selfadjoint matrices.
Example:
Output:
Definition at line 67 of file MatrixBaseEigenvalues.h.
|
inline |
Definition at line 305 of file MatrixBase.h.
|
inline |
Definition at line 306 of file MatrixBase.h.
|
inline |
Definition at line 132 of file ForceAlignedAccess.h.
|
inline |
Definition at line 143 of file ForceAlignedAccess.h.
|
inline |
Definition at line 307 of file MatrixBase.h.
|
inline |
Definition at line 308 of file MatrixBase.h.
|
inline |
*this
.Definition at line 706 of file FullPivHouseholderQR.h.
|
inline |
*this
.Definition at line 870 of file FullPivLU.h.
|
inline |
*this
.Definition at line 427 of file HouseholderQR.h.
|
inline |
*this
avoiding undeflow and overflow. This version use a concatenation of hypot() calls, and it is very slow.Definition at line 241 of file StableNorm.h.
|
static |
This variant is only for fixed-size MatrixBase types. For dynamic-size types, you need to use the variant taking size arguments.
Example:
Output:
Definition at line 799 of file CwiseNullaryOp.h.
|
static |
The parameters rows and cols are the number of rows and of columns of the returned matrix. Must be compatible with this MatrixBase type.
This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Identity() should be used instead.
Example:
Output:
Definition at line 782 of file CwiseNullaryOp.h.
|
inline |
For small fixed sizes up to 4x4, this method uses cofactors. In the general case, this method uses class PartialPivLU.
Definition at line 348 of file InverseImpl.h.
bool Eigen::MatrixBase< Derived >::isDiagonal | ( | const RealScalar & | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
Example:
Output:
Definition at line 339 of file DiagonalMatrix.h.
bool Eigen::MatrixBase< Derived >::isIdentity | ( | const RealScalar & | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
Example:
Output:
Definition at line 816 of file CwiseNullaryOp.h.
bool Eigen::MatrixBase< Derived >::isLowerTriangular | ( | const RealScalar & | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
Definition at line 690 of file TriangularMatrix.h.
bool Eigen::MatrixBase< Derived >::isOrthogonal | ( | const MatrixBase< OtherDerived > & | other, |
const RealScalar & | prec = NumTraits<Scalar>::dummy_precision() |
||
) | const |
Example:
Output:
bool Eigen::MatrixBase< Derived >::isUnitary | ( | const RealScalar & | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
m.isUnitary()
returns true if and only if the columns (equivalently, the rows) of m form an orthonormal basis.Example:
Output:
bool Eigen::MatrixBase< Derived >::isUpperTriangular | ( | const RealScalar & | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
Definition at line 665 of file TriangularMatrix.h.
|
inline |
*this
computed by two-sided Jacobi transformations.Definition at line 805 of file JacobiSVD.h.
EIGEN_DEVICE_FUNC const Product<Derived,OtherDerived,LazyProduct> Eigen::MatrixBase< Derived >::lazyProduct | ( | const MatrixBase< OtherDerived > & | other | ) | const |
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Product<Derived,OtherDerived,LazyProduct> Eigen::MatrixBase< Derived >::lazyProduct | ( | const MatrixBase< OtherDerived > & | other | ) | const |
*this
and other without implicit evaluation.The returned product will behave like any other expressions: the coefficients of the product will be computed once at a time as requested. This might be useful in some extremely rare cases when only a small and no coherent fraction of the result's coefficients have to be computed.
Definition at line 442 of file GeneralProduct.h.
|
inline |
*this
|
inline |
*this
|
inline |
*this
, that is, returns the p-th root of the sum of the p-th powers of the absolute values of the coefficients of *this
. If p is the special value Eigen::Infinity, this function returns the norm, that is the maximum of the absolute values of the coefficients of *this
.In all cases, if *this
is empty, then the value 0 is returned.
*this
is a matrix, then its coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and -norm matrix operator norms using partial reductions .EIGEN_DEVICE_FUNC RealScalar Eigen::MatrixBase< Derived >::lpNorm | ( | ) | const |
|
inline |
Synonym of partialPivLu().
*this
.Definition at line 617 of file PartialPivLU.h.
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::makeHouseholder | ( | EssentialPart & | essential, |
Scalar & | tau, | ||
RealScalar & | beta | ||
) | const |
Computes the elementary reflector H such that: where the transformation H is: and the vector v is:
On output:
essential | the essential part of the vector v |
tau | the scaling factor of the Householder transformation |
beta | the result of H * *this |
Definition at line 67 of file Householder.h.
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::makeHouseholderInPlace | ( | Scalar & | tau, |
RealScalar & | beta | ||
) |
Computes the elementary reflector H such that: where the transformation H is: and the vector v is:
The essential part of the vector v
is stored in *this.
On output:
tau | the scaling factor of the Householder transformation |
beta | the result of H * *this |
Definition at line 43 of file Householder.h.
|
inline |
Definition at line 314 of file MatrixBase.h.
|
inline |
Definition at line 315 of file MatrixBase.h.
const MatrixFunctionReturnValue< Derived > Eigen::MatrixBase< Derived >::matrixFunction | ( | StemFunction | f | ) | const |
Helper function for the unsupported MatrixFunctions module.
Definition at line 529 of file MatrixFunction.h.
NoAlias< Derived, MatrixBase > EIGEN_DEVICE_FUNC Eigen::MatrixBase< Derived >::noalias | ( | ) |
*this
with an operator= assuming no aliasing between *this
and the source expression.More precisely, noalias() allows to bypass the EvalBeforeAssignBit flag. Currently, even though several expressions may alias, only product expressions have this flag. Therefore, noalias() is only useful when the source expression contains a matrix product.
Here are some examples where noalias is useful:
On the other hand the following example will lead to a wrong result:
because the result matrix A is also an operand of the matrix product. Therefore, there is no alternative than evaluating A * B in a temporary, that is the default behavior when you write:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::norm | ( | ) | const |
*this
, and for matrices the Frobenius norm. In both cases, it consists in the square root of the sum of the square of all the matrix entries. For vectors, this is also equals to the square root of the dot product of *this
with itself.EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Eigen::MatrixBase< Derived >::normalize | ( | ) |
Normalizes the vector, i.e. divides it by its own norm.
*this
is left unchanged.EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::PlainObject Eigen::MatrixBase< Derived >::normalized | ( | ) | const |
*this
by its own norm.
|
inline |
*this
and other Example:
Output:
Definition at line 92 of file MatrixBase.h.
|
inline |
*this
and other are not exactly equal to each other. Definition at line 298 of file MatrixBase.h.
EIGEN_DEVICE_FUNC const Product<Derived,OtherDerived> Eigen::MatrixBase< Derived >::operator* | ( | const MatrixBase< OtherDerived > & | other | ) | const |
|
inline |
*this
by the diagonal matrix diagonal. Definition at line 21 of file DiagonalProduct.h.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Product<Derived, OtherDerived> Eigen::MatrixBase< Derived >::operator* | ( | const MatrixBase< OtherDerived > & | other | ) | const |
*this
and other.Definition at line 399 of file GeneralProduct.h.
|
inline |
replaces *this
by *this
* other.
*this
Example:
Output:
Definition at line 515 of file MatrixBase.h.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator+= | ( | const MatrixBase< OtherDerived > & | other | ) |
replaces *this
by *this
+ other.
*this
Definition at line 175 of file CwiseBinaryOp.h.
|
inlineprotected |
Definition at line 493 of file MatrixBase.h.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator-= | ( | const MatrixBase< OtherDerived > & | other | ) |
replaces *this
by *this
- other.
*this
Definition at line 162 of file CwiseBinaryOp.h.
|
inlineprotected |
Definition at line 496 of file MatrixBase.h.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& Eigen::MatrixBase< Derived >::operator= | ( | const EigenBase< OtherDerived > & | other | ) |
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& Eigen::MatrixBase< Derived >::operator= | ( | const ReturnByValue< OtherDerived > & | other | ) |
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator= | ( | const MatrixBase< Derived > & | other | ) |
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator= | ( | const DenseBase< OtherDerived > & | other | ) |
EIGEN_DEVICE_FUNC Derived& Eigen::MatrixBase< Derived >::operator= | ( | const EigenBase< OtherDerived > & | other | ) |
EIGEN_DEVICE_FUNC Derived& Eigen::MatrixBase< Derived >::operator= | ( | const ReturnByValue< OtherDerived > & | other | ) |
|
inline |
*this
and other are all exactly equal. Definition at line 290 of file MatrixBase.h.
|
inline |
Computes the L2 operator norm.
This function computes the L2 operator norm of a matrix, which is also known as the spectral norm. The norm of a matrix is defined to be
where the maximum is over all vectors and the norm on the right is the Euclidean vector norm. The norm equals the largest singular value, which is the square root of the largest eigenvalue of the positive semi-definite matrix .
The current implementation uses the eigenvalues of , as computed by SelfAdjointView::eigenvalues(), to compute the operator norm of a matrix. The SelfAdjointView class provides a better algorithm for selfadjoint matrices.
Example:
Output:
Definition at line 120 of file MatrixBaseEigenvalues.h.
|
inline |
|
inline |
*this
.Definition at line 602 of file PartialPivLU.h.
EIGEN_DEVICE_FUNC SelfAdjointViewReturnType<UpLo>::Type Eigen::MatrixBase< Derived >::selfadjointView | ( | ) |
EIGEN_DEVICE_FUNC ConstSelfAdjointViewReturnType<UpLo>::Type Eigen::MatrixBase< Derived >::selfadjointView | ( | ) | const |
EIGEN_DEVICE_FUNC MatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type Eigen::MatrixBase< Derived >::selfadjointView | ( | ) | const |
This is the const version of MatrixBase::selfadjointView()
Definition at line 341 of file SelfAdjointView.h.
EIGEN_DEVICE_FUNC MatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type Eigen::MatrixBase< Derived >::selfadjointView | ( | ) |
The parameter UpLo can be either Upper
or Lower
Example:
Output:
Definition at line 358 of file SelfAdjointView.h.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setIdentity | ( | ) |
Writes the identity expression (not necessarily square) into *this.
Example:
Output:
Definition at line 873 of file CwiseNullaryOp.h.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setIdentity | ( | Index | rows, |
Index | cols | ||
) |
Resizes to the given size, and writes the identity expression (not necessarily square) into *this.
rows | the new number of rows |
cols | the new number of columns |
Example:
Output:
Definition at line 889 of file CwiseNullaryOp.h.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setUnit | ( | Index | i | ) |
Set the coefficients of *this
to the i-th unit (basis) vector.
i | index of the unique coefficient to be set to 1 |
Definition at line 972 of file CwiseNullaryOp.h.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setUnit | ( | Index | newSize, |
Index | i | ||
) |
Resizes to the given newSize, and writes the i-th unit (basis) vector into *this.
newSize | the new size of the vector |
i | index of the unique coefficient to be set to 1 |
Definition at line 991 of file CwiseNullaryOp.h.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::squaredNorm | ( | ) | const |
*this
, and for matrices the squared Frobenius norm. In both cases, it consists in the sum of the square of all the matrix entries. For vectors, this is also equals to the dot product of *this
with itself.
|
inline |
*this
avoiding underflow and overflow. This version use a blockwise two passes algorithm: 1 - find the absolute largest coefficient s
2 - compute in a standard wayFor architecture/scalar types supporting vectorization, this version is faster than blueNorm(). Otherwise the blueNorm() is much faster.
Definition at line 213 of file StableNorm.h.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Eigen::MatrixBase< Derived >::stableNormalize | ( | ) |
Normalizes the vector while avoid underflow and overflow
This method is analogue to the normalize() method, but it reduces the risk of underflow and overflow when computing the norm.
*this
is left unchanged.EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::PlainObject Eigen::MatrixBase< Derived >::stableNormalized | ( | ) | const |
*this
by its own norm while avoiding underflow and overflow.This method is analogue to the normalized() method, but it reduces the risk of underflow and overflow when computing the norm.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::traits< Derived >::Scalar Eigen::MatrixBase< Derived >::trace | ( | ) | const |
*this
, i.e. the sum of the coefficients on the main diagonal.*this
can be any matrix, not necessarily square.
EIGEN_DEVICE_FUNC TriangularViewReturnType<Mode>::Type Eigen::MatrixBase< Derived >::triangularView | ( | ) |
EIGEN_DEVICE_FUNC ConstTriangularViewReturnType<Mode>::Type Eigen::MatrixBase< Derived >::triangularView | ( | ) | const |
EIGEN_DEVICE_FUNC MatrixBase<Derived>::template TriangularViewReturnType<Mode>::Type Eigen::MatrixBase< Derived >::triangularView | ( | ) |
The parameter Mode can have the following values: Upper
, StrictlyUpper
, UnitUpper
, Lower
, StrictlyLower
, UnitLower
.
Example:
Output:
Definition at line 644 of file TriangularMatrix.h.
EIGEN_DEVICE_FUNC MatrixBase<Derived>::template ConstTriangularViewReturnType<Mode>::Type Eigen::MatrixBase< Derived >::triangularView | ( | ) | const |
This is the const version of MatrixBase::triangularView()
Definition at line 654 of file TriangularMatrix.h.
|
static |
Definition at line 902 of file CwiseNullaryOp.h.
|
static |
This variant is for fixed-size vector only.
Definition at line 917 of file CwiseNullaryOp.h.
|
static |
Definition at line 960 of file CwiseNullaryOp.h.
|
static |
Definition at line 930 of file CwiseNullaryOp.h.
|
static |
Definition at line 940 of file CwiseNullaryOp.h.
|
static |
Definition at line 950 of file CwiseNullaryOp.h.