Two-sided Jacobi SVD decomposition of a rectangular matrix. More...
#include <ForwardDeclarations.h>
Public Member Functions | |
JacobiSVD & | compute (const MatrixType &matrix, unsigned int computationOptions) |
Method performing the decomposition of given matrix using custom options. More... | |
JacobiSVD & | compute (const MatrixType &matrix) |
Method performing the decomposition of given matrix using current options. More... | |
JacobiSVD () | |
Default Constructor. More... | |
JacobiSVD (Index rows, Index cols, unsigned int computationOptions=0) | |
Default Constructor with memory preallocation. More... | |
JacobiSVD (const MatrixType &matrix, unsigned int computationOptions=0) | |
Constructor performing the decomposition of given matrix. More... | |
Public Member Functions inherited from Eigen::SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > | |
void | _solve_impl (const RhsType &rhs, DstType &dst) const |
void | _solve_impl_transposed (const RhsType &rhs, DstType &dst) const |
Index | cols () const |
bool | computeU () const |
bool | computeV () const |
JacobiSVD< _MatrixType, QRPreconditioner > & | derived () |
const JacobiSVD< _MatrixType, QRPreconditioner > & | derived () const |
EIGEN_DEVICE_FUNC ComputationInfo | info () const |
Reports whether previous computation was successful. More... | |
const MatrixUType & | matrixU () const |
const MatrixVType & | matrixV () const |
Index | nonzeroSingularValues () const |
Index | rank () const |
Index | rows () const |
JacobiSVD< _MatrixType, QRPreconditioner > & | setThreshold (const RealScalar &threshold) |
JacobiSVD< _MatrixType, QRPreconditioner > & | setThreshold (Default_t) |
const SingularValuesType & | singularValues () const |
RealScalar | threshold () const |
Public Member Functions inherited from Eigen::SolverBase< SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > > | |
AdjointReturnType | adjoint () const |
const Solve< SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > >, Rhs > | solve (const MatrixBase< Rhs > &b) const |
SolverBase () | |
ConstTransposeReturnType | transpose () const |
~SolverBase () | |
Public Member Functions inherited from Eigen::EigenBase< Derived > | |
template<typename Dest > | |
EIGEN_DEVICE_FUNC void | addTo (Dest &dst) const |
template<typename Dest > | |
EIGEN_DEVICE_FUNC void | applyThisOnTheLeft (Dest &dst) const |
template<typename Dest > | |
EIGEN_DEVICE_FUNC void | applyThisOnTheRight (Dest &dst) const |
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
EIGEN_DEVICE_FUNC Derived & | const_cast_derived () const |
EIGEN_DEVICE_FUNC const Derived & | const_derived () const |
EIGEN_DEVICE_FUNC Derived & | derived () |
EIGEN_DEVICE_FUNC const Derived & | derived () const |
template<typename Dest > | |
EIGEN_DEVICE_FUNC void | evalTo (Dest &dst) const |
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | size () const EIGEN_NOEXCEPT |
template<typename Dest > | |
EIGEN_DEVICE_FUNC void | subTo (Dest &dst) const |
Protected Attributes | |
internal::qr_preconditioner_impl< MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows > | m_qr_precond_morecols |
internal::qr_preconditioner_impl< MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols > | m_qr_precond_morerows |
MatrixType | m_scaledMatrix |
WorkMatrixType | m_workMatrix |
Protected Attributes inherited from Eigen::SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > | |
Index | m_cols |
unsigned int | m_computationOptions |
bool | m_computeFullU |
bool | m_computeFullV |
bool | m_computeThinU |
bool | m_computeThinV |
Index | m_diagSize |
ComputationInfo | m_info |
bool | m_isAllocated |
bool | m_isInitialized |
MatrixUType | m_matrixU |
MatrixVType | m_matrixV |
Index | m_nonzeroSingularValues |
RealScalar | m_prescribedThreshold |
Index | m_rows |
SingularValuesType | m_singularValues |
bool | m_usePrescribedThreshold |
Private Types | |
typedef SVDBase< JacobiSVD > | Base |
Private Member Functions | |
void | allocate (Index rows, Index cols, unsigned int computationOptions) |
Friends | |
template<typename __MatrixType , int _QRPreconditioner, int _Case, bool _DoAnything> | |
struct | internal::qr_preconditioner_impl |
template<typename __MatrixType , int _QRPreconditioner, bool _IsComplex> | |
struct | internal::svd_precondition_2x2_block_to_be_real |
Additional Inherited Members | |
Protected Member Functions inherited from Eigen::SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > | |
void | _check_compute_assertions () const |
void | _check_solve_assertion (const Rhs &b) const |
bool | allocate (Index rows, Index cols, unsigned int computationOptions) |
SVDBase () | |
Default Constructor. More... | |
Protected Member Functions inherited from Eigen::SolverBase< SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > > | |
void | _check_solve_assertion (const Rhs &b) const |
Static Protected Member Functions inherited from Eigen::SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > | |
static void | check_template_parameters () |
Two-sided Jacobi SVD decomposition of a rectangular matrix.
_MatrixType | the type of the matrix of which we are computing the SVD decomposition |
QRPreconditioner | this optional parameter allows to specify the type of QR decomposition that will be used internally for the R-SVD step for non-square matrices. See discussion of possible values below. |
SVD decomposition consists in decomposing any n-by-p matrix A as a product
where U is a n-by-n unitary, V is a p-by-p unitary, and S is a n-by-p real positive matrix which is zero outside of its main diagonal; the diagonal entries of S are known as the singular values of A and the columns of U and V are known as the left and right singular vectors of A respectively.
Singular values are always sorted in decreasing order.
This JacobiSVD decomposition computes only the singular values by default. If you want U or V, you need to ask for them explicitly.
You can ask for only thin U or V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting m be the smaller value among n and p, there are only m singular vectors; the remaining columns of U and V do not correspond to actual singular vectors. Asking for thin U or V means asking for only their m first columns to be formed. So U is then a n-by-m matrix, and V is then a p-by-m matrix. Notice that thin U and V are all you need for (least squares) solving.
Here's an example demonstrating basic usage:
Output:
This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than bidiagonalizing SVD algorithms for large square matrices; however its complexity is still where n is the smaller dimension and p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms. In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to terminate in finite (and reasonable) time.
The possible values for QRPreconditioner are:
Definition at line 278 of file ForwardDeclarations.h.
|
private |
Definition at line 491 of file JacobiSVD.h.
typedef internal::plain_col_type<MatrixType>::type Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::ColType |
Definition at line 512 of file JacobiSVD.h.
typedef _MatrixType Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::MatrixType |
Definition at line 494 of file JacobiSVD.h.
typedef Base::MatrixUType Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::MatrixUType |
Definition at line 507 of file JacobiSVD.h.
typedef Base::MatrixVType Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::MatrixVType |
Definition at line 508 of file JacobiSVD.h.
typedef NumTraits<typename MatrixType::Scalar>::Real Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::RealScalar |
Definition at line 496 of file JacobiSVD.h.
typedef internal::plain_row_type<MatrixType>::type Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::RowType |
Definition at line 511 of file JacobiSVD.h.
typedef MatrixType::Scalar Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::Scalar |
Definition at line 495 of file JacobiSVD.h.
typedef Base::SingularValuesType Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::SingularValuesType |
Definition at line 509 of file JacobiSVD.h.
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime> Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::WorkMatrixType |
Definition at line 515 of file JacobiSVD.h.
anonymous enum |
Enumerator | |
---|---|
RowsAtCompileTime | |
ColsAtCompileTime | |
DiagSizeAtCompileTime | |
MaxRowsAtCompileTime | |
MaxColsAtCompileTime | |
MaxDiagSizeAtCompileTime | |
MatrixOptions |
Definition at line 497 of file JacobiSVD.h.
|
inline |
Default Constructor.
The default constructor is useful in cases in which the user intends to perform decompositions via JacobiSVD::compute(const MatrixType&).
Definition at line 522 of file JacobiSVD.h.
|
inline |
Default Constructor with memory preallocation.
Like the default constructor but with preallocation of the internal data according to the specified problem size.
Definition at line 532 of file JacobiSVD.h.
|
inlineexplicit |
Constructor performing the decomposition of given matrix.
matrix | the matrix to decompose |
computationOptions | optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. By default, none is computed. This is a bit-field, the possible bits are ComputeFullU, ComputeThinU, ComputeFullV, ComputeThinV. |
Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not available with the (non-default) FullPivHouseholderQR preconditioner.
Definition at line 547 of file JacobiSVD.h.
|
private |
Definition at line 615 of file JacobiSVD.h.
JacobiSVD< MatrixType, QRPreconditioner > & Eigen::JacobiSVD< MatrixType, QRPreconditioner >::compute | ( | const MatrixType & | matrix, |
unsigned int | computationOptions | ||
) |
Method performing the decomposition of given matrix using custom options.
matrix | the matrix to decompose |
computationOptions | optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. By default, none is computed. This is a bit-field, the possible bits are ComputeFullU, ComputeThinU, ComputeFullV, ComputeThinV. |
Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not available with the (non-default) FullPivHouseholderQR preconditioner.
Definition at line 666 of file JacobiSVD.h.
|
inline |
Method performing the decomposition of given matrix using current options.
matrix | the matrix to decompose |
This method uses the current computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
Definition at line 570 of file JacobiSVD.h.
|
friend |
Definition at line 607 of file JacobiSVD.h.
|
friend |
Definition at line 605 of file JacobiSVD.h.
|
protected |
Definition at line 609 of file JacobiSVD.h.
|
protected |
Definition at line 610 of file JacobiSVD.h.
|
protected |
Definition at line 611 of file JacobiSVD.h.
|
protected |
Definition at line 602 of file JacobiSVD.h.