|
template<typename RhsType , typename DstType > |
void | _solve_impl (const RhsType &rhs, DstType &dst) const |
|
template<bool Conjugate, typename RhsType , typename DstType > |
void | _solve_impl_transposed (const RhsType &rhs, DstType &dst) const |
|
const LDLT & | adjoint () const |
|
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
|
template<typename InputType > |
LDLT & | compute (const EigenBase< InputType > &matrix) |
|
template<typename InputType > |
LDLT< MatrixType, _UpLo > & | compute (const EigenBase< InputType > &a) |
|
ComputationInfo | info () const |
| Reports whether previous computation was successful. More...
|
|
bool | isNegative (void) const |
|
bool | isPositive () const |
|
| LDLT () |
| Default Constructor. More...
|
|
| LDLT (Index size) |
| Default Constructor with memory preallocation. More...
|
|
template<typename InputType > |
| LDLT (const EigenBase< InputType > &matrix) |
| Constructor with decomposition. More...
|
|
template<typename InputType > |
| LDLT (EigenBase< InputType > &matrix) |
| Constructs a LDLT factorization from a given matrix. More...
|
|
Traits::MatrixL | matrixL () const |
|
const MatrixType & | matrixLDLT () const |
|
Traits::MatrixU | matrixU () const |
|
template<typename Derived > |
LDLT & | rankUpdate (const MatrixBase< Derived > &w, const RealScalar &alpha=1) |
|
template<typename Derived > |
LDLT< MatrixType, _UpLo > & | rankUpdate (const MatrixBase< Derived > &w, const typename LDLT< MatrixType, _UpLo >::RealScalar &sigma) |
|
RealScalar | rcond () const |
|
MatrixType | reconstructedMatrix () const |
|
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
|
void | setZero () |
|
template<typename Derived > |
bool | solveInPlace (MatrixBase< Derived > &bAndX) const |
|
const TranspositionType & | transpositionsP () const |
|
Diagonal< const MatrixType > | vectorD () const |
|
AdjointReturnType | adjoint () const |
|
const Solve< LDLT< _MatrixType, _UpLo >, Rhs > | solve (const MatrixBase< Rhs > &b) const |
|
| SolverBase () |
|
ConstTransposeReturnType | transpose () const |
|
| ~SolverBase () |
|
template<typename Dest > |
EIGEN_DEVICE_FUNC void | addTo (Dest &dst) const |
|
template<typename Dest > |
EIGEN_DEVICE_FUNC void | applyThisOnTheLeft (Dest &dst) const |
|
template<typename Dest > |
EIGEN_DEVICE_FUNC void | applyThisOnTheRight (Dest &dst) const |
|
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
|
EIGEN_DEVICE_FUNC Derived & | const_cast_derived () const |
|
EIGEN_DEVICE_FUNC const Derived & | const_derived () const |
|
EIGEN_DEVICE_FUNC Derived & | derived () |
|
EIGEN_DEVICE_FUNC const Derived & | derived () const |
|
template<typename Dest > |
EIGEN_DEVICE_FUNC void | evalTo (Dest &dst) const |
|
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
|
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | size () const EIGEN_NOEXCEPT |
|
template<typename Dest > |
EIGEN_DEVICE_FUNC void | subTo (Dest &dst) const |
|
template<typename _MatrixType, int _UpLo>
class Eigen::LDLT< _MatrixType, _UpLo >
Robust Cholesky decomposition of a matrix with pivoting.
- Template Parameters
-
_MatrixType | the type of the matrix of which to compute the LDL^T Cholesky decomposition |
_UpLo | the triangular part that will be used for the decompositon: Lower (default) or Upper. The other triangular part won't be read. |
Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite matrix such that , where P is a permutation matrix, L is lower triangular with a unit diagonal and D is a diagonal matrix.
The decomposition uses pivoting to ensure stability, so that D will have zeros in the bottom right rank(A) - n submatrix. Avoiding the square root on D also stabilizes the computation.
Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky decomposition to determine whether a system of equations has a solution.
This class supports the inplace decomposition mechanism.
- See also
- MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT
Definition at line 59 of file LDLT.h.