scalar2_nbi.cpp
Go to the documentation of this file.
1 /*
2  * This file is part of ACADO Toolkit.
3  *
4  * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
5  * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
6  * Milan Vukov, Rien Quirynen, KU Leuven.
7  * Developed within the Optimization in Engineering Center (OPTEC)
8  * under supervision of Moritz Diehl. All rights reserved.
9  *
10  * ACADO Toolkit is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 3 of the License, or (at your option) any later version.
14  *
15  * ACADO Toolkit is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with ACADO Toolkit; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  *
24  */
25 
26 
35 #include <acado_gnuplot.hpp>
36 
37 
38 /* >>> start tutorial code >>> */
39 int main( ){
40 
42 
43 
44  // INTRODUCE THE VARIABLES:
45  // -------------------------
46  Parameter y1,y2;
47 
48 
49  // DEFINE AN OPTIMIZATION PROBLEM:
50  // -------------------------------
51  NLP nlp;
52  nlp.minimize( 0, y1 );
53  nlp.minimize( 1, y2 );
54 
55  nlp.subjectTo( 0.0 <= y1 <= 5.0 );
56  nlp.subjectTo( 0.0 <= y2 <= 5.2 );
57  nlp.subjectTo( 0.0 <= y2 - 5.0*exp(-y1) - 2.0*exp(-0.5*(y1-3.0)*(y1-3.0)) );
58 
59 
60  // DEFINE A MULTI-OBJECTIVE ALGORITHM AND SOLVE THE NLP:
61  // -----------------------------------------------------
62  MultiObjectiveAlgorithm algorithm(nlp);
63 
65  algorithm.set( PARETO_FRONT_DISCRETIZATION, 41 );
66  algorithm.set( KKT_TOLERANCE, 1e-12 );
67 
68  // Minimize individual objective function
69  algorithm.initializeParameters("initial_scalar2_2.txt");
70  algorithm.solveSingleObjective(1);
71 
72  // Minimize individual objective function
73  algorithm.solveSingleObjective(0);
74 
75  // Generate Pareto set
76  algorithm.solve();
77 
78 
79  // GET THE RESULT FOR THE PARETO FRONT AND PLOT IT:
80  // ------------------------------------------------
81  VariablesGrid paretoFront;
82  algorithm.getParetoFront( paretoFront );
83  algorithm.getWeights("scalar2_nbi_weights.txt");
84 
85  GnuplotWindow window1;
86  window1.addSubplot( paretoFront, "Pareto Front y1 vs y2", "y1","y2", PM_POINTS );
87  window1.plot( );
88 
89  paretoFront.print();
90 
91 
92  // FILTER THE PARETO FRONT AND PLOT IT:
93  // ------------------------------------
94  algorithm.getParetoFrontWithFilter( paretoFront );
95  algorithm.getWeightsWithFilter("scalar2_nbi_weights_filtered.txt");
96 
97  GnuplotWindow window2;
98  window2.addSubplot( paretoFront, "Pareto Front (with filter) y1 vs y2", "y1","y2", PM_POINTS );
99  window2.plot( );
100 
101  paretoFront.print();
102 
103 
104  // PRINT INFORMATION ABOUT THE ALGORITHM:
105  // --------------------------------------
106  algorithm.printInfo();
107 
108  return 0;
109 }
110 /* <<< end tutorial code <<< */
111 
returnValue print(std::ostream &stream=std::cout, const char *const name=DEFAULT_LABEL, const char *const startString=DEFAULT_START_STRING, const char *const endString=DEFAULT_END_STRING, uint width=DEFAULT_WIDTH, uint precision=DEFAULT_PRECISION, const char *const colSeparator=DEFAULT_COL_SEPARATOR, const char *const rowSeparator=DEFAULT_ROW_SEPARATOR) const
DMatrix getWeights() const
virtual returnValue plot(PlotFrequency _frequency=PLOT_IN_ANY_CASE)
#define USING_NAMESPACE_ACADO
Provides a time grid consisting of vector-valued optimization variables at each grid point...
returnValue printInfo()
returnValue initializeParameters(const char *fileName)
returnValue subjectTo(const DifferentialEquation &differentialEquation_)
Definition: ocp.cpp:153
returnValue getParetoFrontWithFilter(VariablesGrid &paretoFront) const
returnValue addSubplot(PlotWindowSubplot &_subplot)
returnValue minimize(const Expression &arg)
Definition: nlp.cpp:44
returnValue set(OptionsName name, int value)
Definition: options.cpp:126
returnValue getWeightsWithFilter(const char *fileName) const
Data class for defining static optimization problems.
Definition: nlp.hpp:47
returnValue getParetoFront(VariablesGrid &paretoFront) const
virtual returnValue solveSingleObjective(const int &number)
IntermediateState exp(const Expression &arg)
User-interface to formulate and solve optimal control problems with multiple objectives.
Provides an interface to Gnuplot for plotting algorithmic outputs.
int main()
Definition: scalar2_nbi.cpp:39


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Mon Jun 10 2019 12:35:03