Go to the documentation of this file.
36 using namespace gtsam;
39 cout <<
"Graduated Non-Convexity Example\n";
44 auto priorNoise = noiseModel::Isotropic::Sigma(3, 0.1);
Array< double, 1, 3 > e(1./3., 0.5, 2.)
A nonlinear optimizer that uses the Levenberg-Marquardt trust-region scheme.
void setLossType(const GncLossType type)
Set the robust loss function to be used in GNC (chosen among the ones in GncLossType).
LevenbergMarquardtParams lmParams
void setRelativeErrorTol(double value)
Parameters for Levenberg-Marquardt trust-region scheme.
void addPrior(Key key, const T &prior, const SharedNoiseModel &model=nullptr)
void print(const std::string &str="", const KeyFormatter &keyFormatter=DefaultKeyFormatter) const
Factor Graph consisting of non-linear factors.
Values optimize()
Compute optimal solution using graduated non-convexity.
void setMaxIterations(int value)
NonlinearFactorGraph graph
Pose3 x2(Rot3::Ypr(0.0, 0.0, 0.0), l2)
IsDerived< DERIVEDFACTOR > emplace_shared(Args &&... args)
Emplace a shared pointer to factor of given type.
gtsam
Author(s):
autogenerated on Sat Nov 16 2024 04:02:23