KDOP class describes the KDOP collision structures. K is set as the template parameter, which should be 16, 18, or 24 The KDOP structure is defined by some pairs of parallel planes defined by some axes. For K = 16, the planes are 6 AABB planes and 10 diagonal planes that cut off some space of the edges: (-1,0,0) and (1,0,0) -> indices 0 and 8 (0,-1,0) and (0,1,0) -> indices 1 and 9 (0,0,-1) and (0,0,1) -> indices 2 and 10 (-1,-1,0) and (1,1,0) -> indices 3 and 11 (-1,0,-1) and (1,0,1) -> indices 4 and 12 (0,-1,-1) and (0,1,1) -> indices 5 and 13 (-1,1,0) and (1,-1,0) -> indices 6 and 14 (-1,0,1) and (1,0,-1) -> indices 7 and 15 For K = 18, the planes are 6 AABB planes and 12 diagonal planes that cut off some space of the edges: (-1,0,0) and (1,0,0) -> indices 0 and 9 (0,-1,0) and (0,1,0) -> indices 1 and 10 (0,0,-1) and (0,0,1) -> indices 2 and 11 (-1,-1,0) and (1,1,0) -> indices 3 and 12 (-1,0,-1) and (1,0,1) -> indices 4 and 13 (0,-1,-1) and (0,1,1) -> indices 5 and 14 (-1,1,0) and (1,-1,0) -> indices 6 and 15 (-1,0,1) and (1,0,-1) -> indices 7 and 16 (0,-1,1) and (0,1,-1) -> indices 8 and 17 For K = 18, the planes are 6 AABB planes and 18 diagonal planes that cut off some space of the edges: (-1,0,0) and (1,0,0) -> indices 0 and 12 (0,-1,0) and (0,1,0) -> indices 1 and 13 (0,0,-1) and (0,0,1) -> indices 2 and 14 (-1,-1,0) and (1,1,0) -> indices 3 and 15 (-1,0,-1) and (1,0,1) -> indices 4 and 16 (0,-1,-1) and (0,1,1) -> indices 5 and 17 (-1,1,0) and (1,-1,0) -> indices 6 and 18 (-1,0,1) and (1,0,-1) -> indices 7 and 19 (0,-1,1) and (0,1,-1) -> indices 8 and 20 (-1, -1, 1) and (1, 1, -1) –> indices 9 and 21 (-1, 1, -1) and (1, -1, 1) –> indices 10 and 22 (1, -1, -1) and (-1, 1, 1) –> indices 11 and 23.