28 using namespace gtsam;
45 double delta_t = 0.10;
61 double delta_t = 0.10;
62 Vector3 tau(100.0, 150.0, 10.0);
78 for(
int i=0;
i<tau.size();
i++){
93 double delta_t = 0.10;
94 Vector3 tau(100.0, 150.0, 10.0);
100 Vector3 v1_upd(0.5, -0.7, 0.3);
101 Vector3 v2_upd(-0.7, 0.4, 0.9);
104 Matrix computed_H1, computed_H2;
105 factor.
evaluateError(v1_upd, v2_upd, computed_H1, computed_H2);
108 Matrix numerical_H1, numerical_H2;
109 numerical_H1 = numericalDerivative21<Vector3, Vector3, Vector3>(
110 std::bind(&
predictionError, std::placeholders::_1, std::placeholders::_2,
113 numerical_H2 = numericalDerivative22<Vector3, Vector3, Vector3>(
114 std::bind(&
predictionError, std::placeholders::_1, std::placeholders::_2,
GaussMarkov1stOrderFactor< Vector3 > GaussMarkovFactor
Factors.
static int runAllTests(TestResult &result)
A non-templated config holding any types of Manifold-group elements.
noiseModel::Diagonal::shared_ptr model
bool assert_equal(const Matrix &expected, const Matrix &actual, double tol)
Some functions to compute numerical derivatives.
Pose3 x2(Rot3::Ypr(0.0, 0.0, 0.0), l2)
EIGEN_DEVICE_FUNC const ExpReturnType exp() const
Array< double, 1, 3 > e(1./3., 0.5, 2.)
typedef and functions to augment Eigen's VectorXd
Vector predictionError(const Vector &v1, const Vector &v2, const GaussMarkovFactor factor)
TEST(GaussMarkovFactor, equals)
void insert(Key j, const Value &val)
Vector evaluateError(const VALUE &p1, const VALUE &p2, OptionalMatrixType H1, OptionalMatrixType H2) const override
std::uint64_t Key
Integer nonlinear key type.
noiseModel::Gaussian::shared_ptr SharedGaussian