51 using namespace gtsam;
62 list<TimedOdometry> odometryList;
65 if (!is)
throw runtime_error(
"Plaza2_DR.txt file not found");
68 double t, distance_traveled, delta_heading;
69 is >> t >> distance_traveled >> delta_heading;
70 odometryList.push_back(
81 vector<RangeTriple> triples;
84 if (!is)
throw runtime_error(
"Plaza2_TD.txt file not found");
87 double t, sender, receiver,
range;
88 is >> t >> sender >> receiver >>
range;
96 int main(
int argc,
char** argv) {
103 size_t K = triples.size();
118 rangeNoise = robust ? tukey : gaussian;
124 Pose2 pose0 =
Pose2(-34.2086489999201, 45.3007639991120, -2.02108900000000);
126 newFactors.
addPrior(0, pose0, priorNoise);
149 std::tie(t, odometry) = timedOdometry;
158 lastPose = predictedPose;
159 initial.
insert(i, predictedPose);
160 landmarkEstimates.
insert(i, predictedPose);
163 while (k < K && t >= std::get<0>(triples[k])) {
164 size_t j = std::get<1>(triples[k]);
165 double range = std::get<2>(triples[k]);
168 Vector error = factor.unwhitenedError(landmarkEstimates);
169 if (k <= 200 ||
std::abs(error[0]) < 5)
178 isam.
update(newFactors, initial);
180 gttic_(calculateEstimate);
182 gttoc_(calculateEstimate);
185 landmarkEstimates =
Values();
186 landmarkEstimates.insert(
symbol(
'L', 1), result.
at(
symbol(
'L', 1)));
187 landmarkEstimates.insert(
symbol(
'L', 6), result.
at(
symbol(
'L', 6)));
188 landmarkEstimates.insert(
symbol(
'L', 0), result.
at(
symbol(
'L', 0)));
189 landmarkEstimates.insert(
symbol(
'L', 5), result.
at(
symbol(
'L', 5)));
204 ofstream os2(
"rangeResultLM.txt");
206 os2 <<
key <<
"\t" <<
point.x() <<
"\t" <<
point.y() <<
"\t1" << endl;
207 ofstream
os(
"rangeResult.txt");
209 os <<
key <<
"\t" <<
pose.
x() <<
"\t" <<
pose.
y() <<
"\t" <<
pose.theta() << endl;
const gtsam::Symbol key('X', 0)
A non-templated config holding any types of Manifold-group elements.
Factor Graph consisting of non-linear factors.
const ValueType at(Key j) const
std::pair< double, Pose2 > TimedOdometry
IsDerived< DERIVEDFACTOR > push_back(std::shared_ptr< DERIVEDFACTOR > factor)
Add a factor directly using a shared_ptr.
std::map< Key, ValueType > extract(const std::function< bool(Key)> &filterFcn=&_truePredicate< Key >) const
static Cal3_S2 K(500, 500, 0.1, 640/2, 480/2)
virtual ISAM2Result update(const NonlinearFactorGraph &newFactors=NonlinearFactorGraph(), const Values &newTheta=Values(), const FactorIndices &removeFactorIndices=FactorIndices(), const std::optional< FastMap< Key, int > > &constrainedKeys={}, const std::optional< FastList< Key > > &noRelinKeys={}, const std::optional< FastList< Key > > &extraReelimKeys={}, bool force_relinearize=false)
static shared_ptr Create(const RobustModel::shared_ptr &robust, const NoiseModel::shared_ptr noise)
vector< RangeTriple > readTriples()
void addPrior(Key key, const T &prior, const SharedNoiseModel &model=nullptr)
list< TimedOdometry > readOdometry()
std::shared_ptr< Base > shared_ptr
Incremental update functionality (ISAM2) for BayesTree, with fluid relinearization.
A nonlinear optimizer that uses the Levenberg-Marquardt trust-region scheme.
NonlinearISAM isam(relinearizeInterval)
Key symbol(unsigned char c, std::uint64_t j)
Class compose(const Class &g) const
int main(int argc, char **argv)
GTSAM_EXPORT std::string findExampleDataFile(const std::string &name)
static const Pose3 pose(Rot3(Vector3(1, -1, -1).asDiagonal()), Point3(0, 0, 0.5))
std::vector< float > Values
pair< double, Pose2 > TimedOdometry
ofstream os("timeSchurFactors.csv")
static shared_ptr Sigmas(const Vector &sigmas, bool smart=true)
Double_ range(const Point2_ &p, const Point2_ &q)
std::tuple< double, size_t, double > RangeTriple
void insert(Key j, const Value &val)
Pose2 odometry(2.0, 0.0, 0.0)
utility functions for loading datasets
Values calculateEstimate() const
static shared_ptr Sigma(size_t dim, double sigma, bool smart=true)
All noise models live in the noiseModel namespace.