scalar3_nnc.cpp
Go to the documentation of this file.
1 /*
2  * This file is part of ACADO Toolkit.
3  *
4  * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
5  * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
6  * Milan Vukov, Rien Quirynen, KU Leuven.
7  * Developed within the Optimization in Engineering Center (OPTEC)
8  * under supervision of Moritz Diehl. All rights reserved.
9  *
10  * ACADO Toolkit is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 3 of the License, or (at your option) any later version.
14  *
15  * ACADO Toolkit is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with ACADO Toolkit; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  *
24  */
25 
26 
35 #include <acado_gnuplot.hpp>
36 
37 
38 /* >>> start tutorial code >>> */
39 int main( ){
40 
42 
43 
44  // INTRODUCE THE VARIABLES:
45  // -------------------------
46  Parameter y1,y2,y3;
47 
48 
49  // DEFINE AN OPTIMIZATION PROBLEM:
50  // -------------------------------
51  NLP nlp;
52  nlp.minimize( 0, y1 );
53  nlp.minimize( 1, y2 );
54  nlp.minimize( 2, y3 );
55 
56 
57  nlp.subjectTo( -5.0 <= y1 <= 5.0 );
58  nlp.subjectTo( -5.0 <= y2 <= 5.0 );
59  nlp.subjectTo( -5.0 <= y3 <= 5.0 );
60 
61  nlp.subjectTo( y1*y1+y2*y2+y3*y3 <= 4.0 );
62 
63  // DEFINE A MULTI-OBJECTIVE ALGORITHM AND SOLVE THE NLP:
64  // -----------------------------------------------------
65  MultiObjectiveAlgorithm algorithm(nlp);
66 
68  algorithm.set( PARETO_FRONT_DISCRETIZATION, 11 );
69 
70  // Minimize individual objective function
71  algorithm.solveSingleObjective(0);
72 
73  // Minimize individual objective function
74  algorithm.solveSingleObjective(1);
75 
76  // Minimize individual objective function
77  algorithm.solveSingleObjective(2);
78 
79  // Generate Pareto set
80  algorithm.solve();
81 
82  algorithm.getWeights("scalar3_nnc_weights.txt");
83 
84 
85  // GET THE RESULT FOR THE PARETO FRONT AND PLOT IT:
86  // ------------------------------------------------
87  VariablesGrid paretoFront;
88  // algorithm.getParetoFrontWithFilter( paretoFront );
89  algorithm.getParetoFront( paretoFront );
90 
91  //GnuplotWindow window;
92  //window.addSubplot3D( paretoFront, "Pareto Front y1 vs y2 vs y3","y1","y2", PM_POINTS );
93  //window.plot( );
94 
95  paretoFront.print();
96 
97 
98  // PRINT INFORMATION ABOUT THE ALGORITHM:
99  // --------------------------------------
100  algorithm.printInfo();
101 
102  return 0;
103 }
104 /* <<< end tutorial code <<< */
returnValue print(std::ostream &stream=std::cout, const char *const name=DEFAULT_LABEL, const char *const startString=DEFAULT_START_STRING, const char *const endString=DEFAULT_END_STRING, uint width=DEFAULT_WIDTH, uint precision=DEFAULT_PRECISION, const char *const colSeparator=DEFAULT_COL_SEPARATOR, const char *const rowSeparator=DEFAULT_ROW_SEPARATOR) const
DMatrix getWeights() const
#define USING_NAMESPACE_ACADO
Provides a time grid consisting of vector-valued optimization variables at each grid point...
returnValue printInfo()
returnValue subjectTo(const DifferentialEquation &differentialEquation_)
Definition: ocp.cpp:153
returnValue minimize(const Expression &arg)
Definition: nlp.cpp:44
returnValue set(OptionsName name, int value)
Definition: options.cpp:126
int main()
Definition: scalar3_nnc.cpp:39
Data class for defining static optimization problems.
Definition: nlp.hpp:47
returnValue getParetoFront(VariablesGrid &paretoFront) const
virtual returnValue solveSingleObjective(const int &number)
User-interface to formulate and solve optimal control problems with multiple objectives.


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Mon Jun 10 2019 12:35:03