gauss_newton_approximation_bfgs.hpp
Go to the documentation of this file.
1 /*
2  * This file is part of ACADO Toolkit.
3  *
4  * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
5  * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
6  * Milan Vukov, Rien Quirynen, KU Leuven.
7  * Developed within the Optimization in Engineering Center (OPTEC)
8  * under supervision of Moritz Diehl. All rights reserved.
9  *
10  * ACADO Toolkit is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 3 of the License, or (at your option) any later version.
14  *
15  * ACADO Toolkit is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with ACADO Toolkit; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  *
24  */
25 
26 
34 #ifndef ACADO_TOOLKIT_GAUSS_NEWTON_APPROXIMATION_BFGS_HPP
35 #define ACADO_TOOLKIT_GAUSS_NEWTON_APPROXIMATION_BFGS_HPP
36 
37 
40 
41 
43 
44 
45 class BFGSupdate;
46 
47 
60 {
61  //
62  // PUBLIC MEMBER FUNCTIONS:
63  //
64  public:
65 
68 
71  uint _nBlocks = 0
72  );
73 
76 
79 
82 
83 
84  virtual NLPderivativeApproximation* clone( ) const;
85 
86 
87 
88  virtual returnValue initHessian( BlockMatrix& B,
89  uint N,
90  const OCPiterate& iter
91  );
92 
93  virtual returnValue initScaling( BlockMatrix& B,
94  const BlockMatrix& x,
95  const BlockMatrix& y
96  );
97 
98 
99  virtual returnValue apply( BlockMatrix &B,
100  const BlockMatrix &x,
101  const BlockMatrix &y );
102 
103 
104 
105  //
106  // PROTECTED MEMBER FUNCTIONS:
107  //
108  protected:
109 
110 
111 
112  //
113  // PROTECTED DATA MEMBERS:
114  //
115  protected:
117 };
118 
119 
121 
122 
123 //#include <acado/nlp_derivative_approximation/gauss_newton_approximation_bfgs.ipp>
124 
125 
126 
127 #endif // ACADO_TOOLKIT_GAUSS_NEWTON_APPROXIMATION_BFGS_HPP
128 
129 /*
130  * end of file
131  */
#define N
Data class for storing generic optimization variables.
Definition: ocp_iterate.hpp:57
Implements a very rudimentary block sparse matrix class.
Allows to pass back messages to the calling function.
BEGIN_NAMESPACE_ACADO typedef unsigned int uint
Definition: acado_types.hpp:42
#define CLOSE_NAMESPACE_ACADO
Implements a Gauss-Newton approximation as second-order derivatives within NLPsolvers.
virtual NLPderivativeApproximation * clone() const
Encapsulates all user interaction for setting options, logging data and plotting results.
Implements a Gauss-Newton approximation with block BFGS updates as second-order derivatives within NL...
void rhs(const real_t *x, real_t *f)
Implements BFGS updates for approximating second-order derivatives within NLPsolvers.
Definition: bfgs_update.hpp:67
virtual returnValue initHessian(BlockMatrix &B, uint N, const OCPiterate &iter)
GaussNewtonApproximationWithBFGS & operator=(const GaussNewtonApproximationWithBFGS &rhs)
virtual returnValue initScaling(BlockMatrix &B, const BlockMatrix &x, const BlockMatrix &y)
virtual returnValue apply(BlockMatrix &B, const BlockMatrix &x, const BlockMatrix &y)
#define BEGIN_NAMESPACE_ACADO
Base class for techniques of approximating second-order derivatives within NLPsolvers.


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Mon Jun 10 2019 12:34:37