gauss_newton_approximation.hpp
Go to the documentation of this file.
1 /*
2  * This file is part of ACADO Toolkit.
3  *
4  * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
5  * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
6  * Milan Vukov, Rien Quirynen, KU Leuven.
7  * Developed within the Optimization in Engineering Center (OPTEC)
8  * under supervision of Moritz Diehl. All rights reserved.
9  *
10  * ACADO Toolkit is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 3 of the License, or (at your option) any later version.
14  *
15  * ACADO Toolkit is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with ACADO Toolkit; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  *
24  */
25 
26 
34 #ifndef ACADO_TOOLKIT_GAUSS_NEWTON_APPROXIMATION_HPP
35 #define ACADO_TOOLKIT_GAUSS_NEWTON_APPROXIMATION_HPP
36 
37 
40 
41 
43 
44 
45 
57 {
58  //
59  // PUBLIC MEMBER FUNCTIONS:
60  //
61  public:
62 
65 
67  GaussNewtonApproximation( UserInteraction* _userInteraction
68  );
69 
72 
74  virtual ~GaussNewtonApproximation( );
75 
78 
79 
80  virtual NLPderivativeApproximation* clone( ) const;
81 
82 
83 
84  virtual returnValue initHessian( BlockMatrix& B,
85  uint N,
86  const OCPiterate& iter
87  );
88 
89  virtual returnValue initScaling( BlockMatrix& B,
90  const BlockMatrix& x,
91  const BlockMatrix& y
92  );
93 
94 
95  virtual returnValue apply( BlockMatrix &B,
96  const BlockMatrix &x,
97  const BlockMatrix &y );
98 
99 
100 
101  //
102  // PROTECTED MEMBER FUNCTIONS:
103  //
104  protected:
105 
106 
107 
108  //
109  // PROTECTED DATA MEMBERS:
110  //
111  protected:
112 
113 };
114 
115 
117 
118 
119 //#include <acado/nlp_derivative_approximation/gauss_newton_approximation.ipp>
120 
121 
122 // collect remaining headers
124 
125 
126 
127 #endif // ACADO_TOOLKIT_GAUSS_NEWTON_APPROXIMATION_HPP
128 
129 /*
130  * end of file
131  */
#define N
Data class for storing generic optimization variables.
Definition: ocp_iterate.hpp:57
Implements a very rudimentary block sparse matrix class.
Allows to pass back messages to the calling function.
BEGIN_NAMESPACE_ACADO typedef unsigned int uint
Definition: acado_types.hpp:42
#define CLOSE_NAMESPACE_ACADO
Implements a Gauss-Newton approximation as second-order derivatives within NLPsolvers.
virtual returnValue initScaling(BlockMatrix &B, const BlockMatrix &x, const BlockMatrix &y)
Encapsulates all user interaction for setting options, logging data and plotting results.
void rhs(const real_t *x, real_t *f)
virtual returnValue apply(BlockMatrix &B, const BlockMatrix &x, const BlockMatrix &y)
virtual NLPderivativeApproximation * clone() const
virtual returnValue initHessian(BlockMatrix &B, uint N, const OCPiterate &iter)
GaussNewtonApproximation & operator=(const GaussNewtonApproximation &rhs)
#define BEGIN_NAMESPACE_ACADO
Base class for techniques of approximating second-order derivatives within NLPsolvers.


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Mon Jun 10 2019 12:34:37