examples/nlp/getting_started.cpp
Go to the documentation of this file.
1 /*
2  * This file is part of ACADO Toolkit.
3  *
4  * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
5  * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
6  * Milan Vukov, Rien Quirynen, KU Leuven.
7  * Developed within the Optimization in Engineering Center (OPTEC)
8  * under supervision of Moritz Diehl. All rights reserved.
9  *
10  * ACADO Toolkit is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 3 of the License, or (at your option) any later version.
14  *
15  * ACADO Toolkit is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with ACADO Toolkit; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  *
24  */
25 
26 
27 
36 #include <acado_gnuplot.hpp>
37 
38 
39 int main( ){
40 
42 
43  // INTRODUCE THE VARIABLES:
44  // -------------------------
45  Parameter a, b;
46 
47  // DEFINE AN OPTIMAL CONTROL PROBLEM:
48  // ----------------------------------
49  NLP nlp;
50  nlp.minimize ( a*a + b*b );
51  nlp.subjectTo( 0.08 <= a );
52  nlp.subjectTo( 0.1 <= a + b + 0.3*a*a );
53 
54 
55  // DEFINE AN OPTIMIZATION ALGORITHM AND SOLVE THE NLP:
56  // ---------------------------------------------------
57  OptimizationAlgorithm algorithm(nlp);
58  algorithm.solve();
59 
60 
61  // PRINT OPTIMAL SOLUTION:
62  // -----------------------
63  DVector results;
64  algorithm.getParameters( results );
65  results.print( "optimal solution" );
66 
67  return 0;
68 }
69 
70 
71 
User-interface to formulate and solve optimal control problems and static NLPs.
#define USING_NAMESPACE_ACADO
returnValue getParameters(VariablesGrid &u_) const
returnValue subjectTo(const DifferentialEquation &differentialEquation_)
Definition: ocp.cpp:153
returnValue minimize(const Expression &arg)
Definition: nlp.cpp:44
virtual returnValue print(std::ostream &stream=std::cout, const std::string &name=DEFAULT_LABEL, const std::string &startString=DEFAULT_START_STRING, const std::string &endString=DEFAULT_END_STRING, uint width=DEFAULT_WIDTH, uint precision=DEFAULT_PRECISION, const std::string &colSeparator=DEFAULT_COL_SEPARATOR, const std::string &rowSeparator=DEFAULT_ROW_SEPARATOR) const
Definition: vector.cpp:97
Data class for defining static optimization problems.
Definition: nlp.hpp:47
virtual returnValue solve()


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Mon Jun 10 2019 12:34:39