00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036 #include <gtest/gtest.h>
00037
00038 #include <vector>
00039
00040 #include <stdio.h>
00041
00042 using namespace std;
00043
00044 #include <pcl/common/time.h>
00045 #include <pcl/point_cloud.h>
00046 #include <pcl/point_types.h>
00047
00048 using namespace pcl;
00049
00050 #include <pcl/octree/octree.h>
00051 #include <pcl/octree/octree_impl.h>
00052
00053 using namespace octree;
00054
00055 TEST (PCL, Octree_Test)
00056 {
00057
00058 unsigned int i, j;
00059 int data[256];
00060
00061
00062 OctreeBase<int> octreeA;
00063 OctreeBase<int> octreeB;
00064
00065
00066 octreeA.setTreeDepth (8);
00067 octreeB.setTreeDepth (8);
00068
00069 struct MyVoxel
00070 {
00071 unsigned int x;
00072 unsigned int y;
00073 unsigned int z;
00074 };
00075 MyVoxel voxels[256];
00076
00077 srand (static_cast<unsigned int> (time (NULL)));
00078
00079
00080 for (i = 0; i < 256; i++)
00081 {
00082 data[i] = i;
00083
00084 voxels[i].x = i;
00085 voxels[i].y = 255 - i;
00086 voxels[i].z = i;
00087
00088
00089 octreeA.addData (voxels[i].x, voxels[i].y, voxels[i].z, data[i]);
00090 }
00091
00092 int LeafNode;
00093 for (i = 0; i < 128; i++)
00094 {
00095
00096 octreeA.getData (voxels[i].x, voxels[i].y, voxels[i].z, LeafNode);
00097
00098 ASSERT_EQ(LeafNode, data[i]);
00099 }
00100
00101 for (i = 128; i < 256; i++)
00102 {
00103
00104 ASSERT_EQ( octreeA.existLeaf(voxels[i].x,voxels[i].y,voxels[i].z), true);
00105
00106
00107 octreeA.removeLeaf (voxels[i].x, voxels[i].y, voxels[i].z);
00108
00109
00110 ASSERT_EQ( octreeA.existLeaf(voxels[i].x,voxels[i].y,voxels[i].z), false);
00111 }
00112
00113
00114
00115 std::vector<char> treeBinaryA;
00116 std::vector<char> treeBinaryB;
00117
00118 std::vector<int> leafVectorA;
00119 std::vector<int> leafVectorB;
00120
00121
00122 octreeA.serializeTree (treeBinaryA);
00123
00124
00125 octreeB.deserializeTree (treeBinaryA);
00126
00127 for (i = 0; i < 128; i++)
00128 {
00129
00130 ASSERT_EQ( octreeA.existLeaf(voxels[i].x,voxels[i].y,voxels[i].z), true);
00131 ASSERT_EQ( octreeB.existLeaf(voxels[i].x,voxels[i].y,voxels[i].z), true);
00132 }
00133
00134 for (i = 128; i < 256; i++)
00135 {
00136
00137 ASSERT_EQ( octreeB.existLeaf(voxels[i].x,voxels[i].y,voxels[i].z), false);
00138 }
00139
00140
00141 octreeB.deleteTree ();
00142
00143
00144 ASSERT_EQ (static_cast <unsigned int> (0), octreeB.getLeafCount());
00145
00146
00147 for (i = 0; i < 128; i++)
00148 {
00149 ASSERT_EQ(octreeB.existLeaf(voxels[i].x,voxels[i].y,voxels[i].z), false);
00150 }
00151
00152
00153 octreeA.serializeTree (treeBinaryA, leafVectorA);
00154
00155
00156 ASSERT_EQ(leafVectorA.size(), octreeA.getLeafCount());
00157
00158
00159 bool bFound;
00160 for (i = 0; i < 128; i++)
00161 {
00162 int leafInt = leafVectorA.back ();
00163 leafVectorA.pop_back ();
00164
00165 bFound = false;
00166 for (j = 0; j < 256; j++)
00167 if (data[j] == leafInt)
00168 {
00169 bFound = true;
00170 break;
00171 }
00172
00173 ASSERT_EQ(bFound, true);
00174 }
00175
00176
00177 octreeA.serializeLeafs (leafVectorA);
00178
00179 for (i = 0; i < 128; i++)
00180 {
00181 int leafInt = leafVectorA.back ();
00182 leafVectorA.pop_back ();
00183
00184 bFound = false;
00185 for (j = 0; j < 256; j++)
00186 if (data[j] == leafInt)
00187 {
00188 bFound = true;
00189 break;
00190 }
00191
00192 ASSERT_EQ(bFound, true);
00193 }
00194
00195
00196 octreeA.serializeTree (treeBinaryA, leafVectorA);
00197 octreeB.deserializeTree (treeBinaryA, leafVectorA);
00198
00199
00200 ASSERT_EQ(octreeA.getLeafCount(), octreeB.getLeafCount());
00201 ASSERT_EQ(static_cast<unsigned int> (128), octreeB.getLeafCount());
00202
00203 octreeB.serializeTree (treeBinaryB, leafVectorB);
00204
00205
00206 ASSERT_EQ(leafVectorB.size(), octreeB.getLeafCount());
00207 ASSERT_EQ(leafVectorA.size(), leafVectorB.size());
00208
00209 for (i = 0; i < leafVectorB.size (); i++)
00210 {
00211 ASSERT_EQ( (leafVectorA[i] == leafVectorB[i]), true);
00212 }
00213
00214
00215
00216 OctreeBase<int>::Iterator a_it (octreeA);
00217 unsigned int node_count = 0;
00218 unsigned int branch_count = 0;
00219 unsigned int leaf_count = 0;
00220
00221
00222 while (*++a_it)
00223 {
00224
00225 unsigned int depth = a_it.getCurrentOctreeDepth ();
00226 ASSERT_LE(depth, octreeA.getTreeDepth());
00227
00228
00229 const OctreeNode* node = a_it.getCurrentOctreeNode ();
00230 if (node->getNodeType () == BRANCH_NODE)
00231 {
00232 branch_count++;
00233 }
00234 else if (node->getNodeType () == LEAF_NODE)
00235 {
00236 leaf_count++;
00237 }
00238 node_count++;
00239 }
00240
00241
00242 ASSERT_EQ(node_count, branch_count + leaf_count);
00243 ASSERT_EQ(leaf_count, octreeA.getLeafCount ());
00244
00245 }
00246
00247 TEST (PCL, Octree_Dynamic_Depth_Test)
00248 {
00249
00250 size_t i;
00251 int test_runs = 100;
00252 int pointcount = 300;
00253
00254 int test, point;
00255
00256 float resolution = 0.01f;
00257
00258 const static size_t leafAggSize = 5;
00259
00260 OctreePointCloudPointVector<PointXYZ> octree (resolution);
00261
00262
00263 PointCloud<PointXYZ>::Ptr cloud (new PointCloud<PointXYZ> ());
00264
00265
00266 octree.setInputCloud (cloud);
00267
00268 for (test = 0; test < test_runs; ++test)
00269 {
00270
00271
00272 cloud->points.clear ();
00273 octree.deleteTree ();
00274
00275 for (point = 0; point < pointcount; point++)
00276 {
00277
00278 PointXYZ newPoint (static_cast<float> (1024.0 * rand () / RAND_MAX),
00279 static_cast<float> (1024.0 * rand () / RAND_MAX),
00280 static_cast<float> (1024.0 * rand () / RAND_MAX));
00281
00282
00283 cloud->push_back (newPoint);
00284 }
00285
00286
00287 octree.defineBoundingBox ();
00288 octree.enableDynamicDepth (leafAggSize);
00289 octree.addPointsFromInputCloud ();
00290
00291
00292 OctreePointCloudPointVector<PointXYZ>::LeafNodeIterator it (octree);
00293 unsigned int leaf_count = 0;
00294
00295
00296 std::vector<int> indexVector;
00297
00298
00299 while (*++it)
00300 {
00301 OctreeNode* node = it.getCurrentOctreeNode ();
00302
00303 ASSERT_EQ(node->getNodeType(), LEAF_NODE);
00304
00305 if (it.getCurrentOctreeDepth () < octree.getTreeDepth ())
00306 ASSERT_LE(it.getSize(), leafAggSize);
00307
00308
00309 it.getData (indexVector);
00310
00311
00312 std::vector<int> tmpVector;
00313 it.getData (tmpVector);
00314
00315 Eigen::Vector3f min_pt, max_pt;
00316 octree.getVoxelBounds (it, min_pt, max_pt);
00317
00318 for (i=0; i<tmpVector.size(); ++i)
00319 {
00320 ASSERT_GE(cloud->points[tmpVector[i]].x, min_pt(0));
00321 ASSERT_GE(cloud->points[tmpVector[i]].y, min_pt(1));
00322 ASSERT_GE(cloud->points[tmpVector[i]].z, min_pt(2));
00323 ASSERT_LE(cloud->points[tmpVector[i]].x, max_pt(0));
00324 ASSERT_LE(cloud->points[tmpVector[i]].y, max_pt(1));
00325 ASSERT_LE(cloud->points[tmpVector[i]].z, max_pt(2));
00326 }
00327
00328 leaf_count++;
00329
00330 }
00331 ASSERT_EQ(pointcount, indexVector.size());
00332
00333
00334 for (i = 0; i < indexVector.size (); ++i)
00335 {
00336 #if !defined(__APPLE__)
00337 bool indexFound = (std::find(indexVector.begin(), indexVector.end(), i) != indexVector.end());
00338 ASSERT_EQ(indexFound, true);
00339 #endif
00340 }
00341
00342
00343 ASSERT_EQ(leaf_count, octree.getLeafCount ());
00344
00345 }
00346 }
00347
00348 TEST (PCL, Octree2Buf_Test)
00349 {
00350
00351
00352 Octree2BufBase<int> octreeA;
00353 Octree2BufBase<int> octreeB;
00354
00355
00356 octreeA.setTreeDepth (8);
00357 octreeB.setTreeDepth (8);
00358
00359 struct MyVoxel
00360 {
00361 unsigned int x;
00362 unsigned int y;
00363 unsigned int z;
00364 };
00365
00366 unsigned int i, j;
00367 int data[256];
00368 MyVoxel voxels[256];
00369
00370 srand (static_cast<unsigned int> (time (NULL)));
00371
00372
00373 for (i = 0; i < 256; i++)
00374 {
00375 data[i] = i;
00376
00377 voxels[i].x = i;
00378 voxels[i].y = 255 - i;
00379 voxels[i].z = i;
00380
00381
00382 octreeA.addData (voxels[i].x, voxels[i].y, voxels[i].z, data[i]);
00383
00384 }
00385
00386 ASSERT_EQ(static_cast<unsigned int> (256), octreeA.getLeafCount());
00387
00388 int TreeData;
00389
00390 for (i = 0; i < 128; i++)
00391 {
00392
00393 octreeA.getData (voxels[i].x, voxels[i].y, voxels[i].z, TreeData);
00394 ASSERT_EQ(TreeData, data[i]);
00395 }
00396
00397 for (i = 128; i < 256; i++)
00398 {
00399
00400 ASSERT_EQ( octreeA.existLeaf(voxels[i].x,voxels[i].y,voxels[i].z), true);
00401
00402
00403 octreeA.removeLeaf (voxels[i].x, voxels[i].y, voxels[i].z);
00404
00405
00406 ASSERT_EQ( octreeA.existLeaf(voxels[i].x,voxels[i].y,voxels[i].z), false);
00407 }
00408
00410
00411
00412
00413 std::vector<char> treeBinaryA;
00414 std::vector<char> treeBinaryB;
00415
00416 std::vector<int> leafVectorA;
00417 std::vector<int> leafVectorB;
00418
00419
00420 octreeA.serializeTree (treeBinaryA);
00421
00422
00423 octreeB.deserializeTree (treeBinaryA);
00424
00425
00426 for (i = 0; i < 128; i++)
00427 {
00428 ASSERT_EQ( octreeB.existLeaf(voxels[i].x,voxels[i].y,voxels[i].z), true);
00429 }
00430
00431
00432 for (i = 128; i < 256; i++)
00433 {
00434 ASSERT_EQ( octreeB.existLeaf(voxels[i].x,voxels[i].y,voxels[i].z), false);
00435 }
00436
00437
00438 octreeB.deleteTree ();
00439 octreeB.setTreeDepth (8);
00440
00441
00442 ASSERT_EQ(static_cast<unsigned int> (0), octreeB.getLeafCount());
00443
00444 for (i = 0; i < 128; i++)
00445 {
00446 ASSERT_EQ( octreeB.existLeaf(voxels[i].x,voxels[i].y,voxels[i].z), false);
00447 }
00448
00449
00450 octreeA.serializeTree (treeBinaryA, leafVectorA);
00451
00452
00453 ASSERT_EQ(leafVectorA.size(), octreeA.getLeafCount());
00454
00455
00456 bool bFound;
00457 for (i = 0; i < 128; i++)
00458 {
00459 int leafInt = leafVectorA.back ();
00460 leafVectorA.pop_back ();
00461
00462 bFound = false;
00463 for (j = 0; j < 256; j++)
00464 if (data[j] == leafInt)
00465 {
00466 bFound = true;
00467 break;
00468 }
00469
00470 ASSERT_EQ(bFound, true);
00471 }
00472
00473
00474 octreeA.serializeLeafs (leafVectorA);
00475
00476 for (i = 0; i < 128; i++)
00477 {
00478 int leafInt = leafVectorA.back ();
00479 leafVectorA.pop_back ();
00480
00481 bFound = false;
00482 for (j = 0; j < 256; j++)
00483 if (data[j] == leafInt)
00484 {
00485 bFound = true;
00486 break;
00487 }
00488
00489 ASSERT_EQ(bFound, true);
00490 }
00491
00492
00493 octreeA.serializeTree (treeBinaryA, leafVectorA);
00494 octreeB.deserializeTree (treeBinaryA, leafVectorA);
00495
00496 ASSERT_EQ(octreeA.getLeafCount(), octreeB.getLeafCount());
00497 ASSERT_EQ(static_cast<unsigned int> (128), octreeB.getLeafCount());
00498
00499 octreeB.serializeTree (treeBinaryB, leafVectorB);
00500
00501
00502 ASSERT_EQ(leafVectorB.size(), octreeB.getLeafCount());
00503 ASSERT_EQ(leafVectorA.size(), leafVectorB.size());
00504
00505 for (i = 0; i < leafVectorB.size (); i++)
00506 {
00507 ASSERT_EQ( (leafVectorA[i] == leafVectorB[i]), true);
00508 }
00509
00510 }
00511
00512
00513 TEST (PCL, Octree2Buf_Base_Double_Buffering_Test)
00514 {
00515
00516 #define TESTPOINTS 3000
00517
00518
00519 Octree2BufBase<int> octreeA;
00520 Octree2BufBase<int> octreeB;
00521
00522 std::vector<char> treeBinaryA;
00523 std::vector<char> treeBinaryB;
00524
00525 std::vector<int> leafVectorA;
00526 std::vector<int> leafVectorB;
00527
00528 octreeA.setTreeDepth (5);
00529 octreeB.setTreeDepth (5);
00530
00531 struct MyVoxel
00532 {
00533 unsigned int x;
00534 unsigned int y;
00535 unsigned int z;
00536 };
00537
00538 unsigned int i, j, k, runs;
00539 int data[TESTPOINTS];
00540 MyVoxel voxels[TESTPOINTS];
00541
00542 srand (static_cast<unsigned int> (time (NULL)));
00543
00544 const unsigned int test_runs = 20;
00545
00546 for (j = 0; j < test_runs; j++)
00547 {
00548 octreeA.deleteTree ();
00549 octreeB.deleteTree ();
00550 octreeA.setTreeDepth (5);
00551 octreeB.setTreeDepth (5);
00552
00553 runs = rand () % 20 + 1;
00554 for (k = 0; k < runs; k++)
00555 {
00556
00557 octreeA.switchBuffers ();
00558 octreeB.switchBuffers ();
00559
00560 for (i = 0; i < TESTPOINTS; i++)
00561 {
00562 data[i] = rand ();
00563
00564 voxels[i].x = rand () % 4096;
00565 voxels[i].y = rand () % 4096;
00566 voxels[i].z = rand () % 4096;
00567
00568
00569
00570 octreeA.addData (voxels[i].x, voxels[i].y, voxels[i].z, data[i]);
00571
00572 }
00573
00574
00575 octreeA.serializeTree (treeBinaryA, leafVectorA, true);
00576 octreeB.deserializeTree (treeBinaryA, leafVectorA, true);
00577 }
00578
00579 octreeB.serializeTree (treeBinaryB, leafVectorB, true);
00580
00581
00582 ASSERT_EQ(octreeA.getLeafCount(), octreeB.getLeafCount());
00583 ASSERT_EQ(leafVectorB.size(), octreeB.getLeafCount());
00584 ASSERT_EQ(leafVectorA.size(), leafVectorB.size());
00585
00586
00587 for (i = 0; i < leafVectorB.size (); i++)
00588 {
00589 ASSERT_EQ( (leafVectorA[i] == leafVectorB[i]), true);
00590 }
00591
00592 }
00593
00594 }
00595
00596 TEST (PCL, Octree2Buf_Base_Double_Buffering_XOR_Test)
00597 {
00598
00599 #define TESTPOINTS 3000
00600
00601
00602 Octree2BufBase<int> octreeA;
00603 Octree2BufBase<int> octreeB;
00604
00605 std::vector<char> treeBinaryA;
00606 std::vector<char> treeBinaryB;
00607
00608 std::vector<int> leafVectorA;
00609 std::vector<int> leafVectorB;
00610
00611 octreeA.setTreeDepth (5);
00612 octreeB.setTreeDepth (5);
00613
00614 struct MyVoxel
00615 {
00616 unsigned int x;
00617 unsigned int y;
00618 unsigned int z;
00619 };
00620
00621 unsigned int i, j;
00622 int data[TESTPOINTS];
00623 MyVoxel voxels[TESTPOINTS];
00624
00625 srand (static_cast<unsigned int> (time (NULL)));
00626
00627 const unsigned int test_runs = 15;
00628
00629 for (j = 0; j < test_runs; j++)
00630 {
00631 for (i = 0; i < TESTPOINTS; i++)
00632 {
00633 data[i] = rand ();
00634
00635 voxels[i].x = rand () % 4096;
00636 voxels[i].y = rand () % 4096;
00637 voxels[i].z = rand () % 4096;
00638
00639
00640
00641 octreeA.addData (voxels[i].x, voxels[i].y, voxels[i].z, data[i]);
00642 }
00643
00644
00645 octreeA.serializeTree (treeBinaryA, leafVectorA, true);
00646 octreeB.deserializeTree (treeBinaryA, leafVectorA, true);
00647 octreeB.serializeTree (treeBinaryB, leafVectorB, true);
00648
00649
00650 ASSERT_EQ(octreeA.getLeafCount(), octreeB.getLeafCount());
00651 ASSERT_EQ(leafVectorB.size(), octreeB.getLeafCount());
00652 ASSERT_EQ(leafVectorA.size(), leafVectorB.size());
00653 ASSERT_EQ(treeBinaryA.size(), octreeB.getBranchCount());
00654 ASSERT_EQ(treeBinaryA.size(), treeBinaryB.size());
00655
00656
00657 for (i = 0; i < leafVectorB.size (); i++)
00658 {
00659 ASSERT_EQ( (leafVectorA[i] == leafVectorB[i]), true);
00660 }
00661
00662
00663 octreeA.switchBuffers ();
00664 octreeB.switchBuffers ();
00665
00666 }
00667
00668 }
00669
00670 TEST (PCL, Octree_Pointcloud_Test)
00671 {
00672
00673 size_t i;
00674 int test_runs = 100;
00675 int pointcount = 300;
00676
00677 int test, point;
00678
00679 float resolution = 0.01f;
00680
00681
00682 OctreePointCloudSinglePoint<PointXYZ> octreeA (resolution);
00683 OctreePointCloudSearch<PointXYZ> octreeB (resolution);
00684 OctreePointCloudPointVector<PointXYZ> octreeC (resolution);
00685
00686
00687 PointCloud<PointXYZ>::Ptr cloudA (new PointCloud<PointXYZ> ());
00688 PointCloud<PointXYZ>::Ptr cloudB (new PointCloud<PointXYZ> ());
00689
00690
00691 octreeA.setInputCloud (cloudA);
00692 octreeB.setInputCloud (cloudB);
00693 octreeC.setInputCloud (cloudB);
00694
00695 for (test = 0; test < test_runs; ++test)
00696 {
00697
00698
00699 cloudA->points.clear ();
00700 octreeA.deleteTree ();
00701
00702 cloudB->points.clear ();
00703 octreeB.deleteTree ();
00704
00705 octreeC.deleteTree ();
00706
00707 for (point = 0; point < pointcount; point++)
00708 {
00709
00710 PointXYZ newPoint (static_cast<float> (1024.0 * rand () / RAND_MAX),
00711 static_cast<float> (1024.0 * rand () / RAND_MAX),
00712 static_cast<float> (1024.0 * rand () / RAND_MAX));
00713
00714 if (!octreeA.isVoxelOccupiedAtPoint (newPoint))
00715 {
00716
00717 octreeA.addPointToCloud (newPoint, cloudA);
00718 }
00719
00720
00721 cloudB->push_back (newPoint);
00722 }
00723
00724 ASSERT_EQ(octreeA.getLeafCount(), cloudA->points.size());
00725
00726
00727 for (i = 0; i < cloudA->points.size (); i++)
00728 {
00729 ASSERT_EQ(octreeA.isVoxelOccupiedAtPoint(cloudA->points[i]), true);
00730 octreeA.deleteVoxelAtPoint (cloudA->points[i]);
00731 ASSERT_EQ(octreeA.isVoxelOccupiedAtPoint(cloudA->points[i]), false);
00732 }
00733
00734 ASSERT_EQ(octreeA.getLeafCount(), static_cast<unsigned int> (0));
00735
00736
00737 octreeB.defineBoundingBox ();
00738 octreeB.addPointsFromInputCloud ();
00739
00740
00741 OctreePointCloudSearch<PointXYZ>::Iterator b_it (octreeB);
00742 unsigned int node_count = 0;
00743 unsigned int branch_count = 0;
00744 unsigned int leaf_count = 0;
00745
00746 double minx, miny, minz, maxx, maxy, maxz;
00747 octreeB.getBoundingBox (minx, miny, minz, maxx, maxy, maxz);
00748
00749
00750 while (*++b_it)
00751 {
00752
00753 unsigned int depth = b_it.getCurrentOctreeDepth ();
00754 ASSERT_LE(depth, octreeB.getTreeDepth());
00755
00756 Eigen::Vector3f voxel_min, voxel_max;
00757 octreeB.getVoxelBounds (b_it, voxel_min, voxel_max);
00758
00759 ASSERT_GE(voxel_min.x (), minx - 1e-4);
00760 ASSERT_GE(voxel_min.y (), miny - 1e-4);
00761 ASSERT_GE(voxel_min.z (), minz - 1e-4);
00762
00763 ASSERT_LE(voxel_max.x (), maxx + 1e-4);
00764 ASSERT_LE(voxel_max.y (), maxy + 1e-4);
00765 ASSERT_LE(voxel_max.z (), maxz + 1e-4);
00766
00767
00768 const OctreeNode* node = b_it.getCurrentOctreeNode ();
00769 if (node->getNodeType () == BRANCH_NODE)
00770 {
00771 branch_count++;
00772 }
00773 else if (node->getNodeType () == LEAF_NODE)
00774 {
00775 leaf_count++;
00776 }
00777 node_count++;
00778 }
00779
00780
00781 ASSERT_EQ(node_count, branch_count + leaf_count);
00782 ASSERT_EQ(leaf_count, octreeB.getLeafCount ());
00783
00784 for (i = 0; i < cloudB->points.size (); i++)
00785 {
00786
00787 std::vector<int> pointIdxVec;
00788 octreeB.voxelSearch (cloudB->points[i], pointIdxVec);
00789
00790 bool bIdxFound = false;
00791 std::vector<int>::const_iterator current = pointIdxVec.begin ();
00792 while (current != pointIdxVec.end ())
00793 {
00794 if (*current == static_cast<int> (i))
00795 {
00796 bIdxFound = true;
00797 break;
00798 }
00799 ++current;
00800 }
00801
00802 ASSERT_EQ(bIdxFound, true);
00803
00804 }
00805
00806
00807
00808 std::vector<char> treeBinaryB;
00809 std::vector<char> treeBinaryC;
00810
00811 std::vector<int> leafVectorB;
00812 std::vector<int> leafVectorC;
00813
00814 double minX, minY, minZ, maxX, maxY, maxZ;
00815
00816
00817 octreeB.serializeTree (treeBinaryB, leafVectorB);
00818 octreeB.getBoundingBox (minX, minY, minZ, maxX, maxY, maxZ);
00819
00820 ASSERT_EQ(cloudB->points.size(), leafVectorB.size());
00821
00822
00823 octreeC.deleteTree ();
00824 octreeC.defineBoundingBox (minX, minY, minZ, maxX, maxY, maxZ);
00825
00826 octreeC.deserializeTree (treeBinaryB, leafVectorB);
00827
00828
00829 octreeC.serializeTree (treeBinaryC, leafVectorC);
00830
00831
00832 ASSERT_EQ(octreeB.getLeafCount(), octreeC.getLeafCount());
00833 ASSERT_EQ(treeBinaryB.size(), treeBinaryC.size());
00834 ASSERT_EQ(octreeB.getLeafCount(), cloudB->points.size());
00835
00836 for (i = 0; i < leafVectorB.size (); ++i)
00837 {
00838 ASSERT_EQ(leafVectorB[i], leafVectorC[i]);
00839 }
00840
00841
00842 for (i = 0; i < treeBinaryB.size (); ++i)
00843 {
00844 ASSERT_EQ(treeBinaryB[i], treeBinaryC[i]);
00845 }
00846
00847 }
00848
00849 }
00850
00851 TEST (PCL, Octree_Pointcloud_Density_Test)
00852 {
00853
00854
00855
00856 PointCloud<PointXYZ>::Ptr cloudIn (new PointCloud<PointXYZ> ());
00857
00858 for (float z = 0.05f; z < 7.0f; z += 0.1f)
00859 for (float y = 0.05f; y < 7.0f; y += 0.1f)
00860 for (float x = 0.05f; x < 7.0f; x += 0.1f)
00861 cloudIn->push_back (PointXYZ (x, y, z));
00862
00863 cloudIn->width = static_cast<uint32_t> (cloudIn->points.size ());
00864 cloudIn->height = 1;
00865
00866 OctreePointCloudDensity<PointXYZ> octreeA (1.0f);
00867 OctreePointCloudDensity<PointXYZ> octreeB (0.00001f);
00868
00869 octreeA.defineBoundingBox (7.0, 7.0, 7.0);
00870 octreeB.defineBoundingBox (7.0, 7.0, 7.0);
00871
00872
00873 octreeA.setInputCloud (cloudIn);
00874 octreeB.setInputCloud (cloudIn);
00875
00876 octreeA.addPointsFromInputCloud ();
00877 octreeB.addPointsFromInputCloud ();
00878
00879
00880 for (float z = 1.5f; z < 3.5f; z += 1.0f)
00881 for (float y = 1.5f; y < 3.5f; y += 1.0f)
00882 for (float x = 1.5f; x < 3.5f; x += 1.0f)
00883 ASSERT_EQ(octreeA.getVoxelDensityAtPoint (PointXYZ(x, y, z)), static_cast<unsigned int> (1000));
00884
00885 for (float z = 0.05f; z < 5.0f; z += 0.1f)
00886 for (float y = 0.05f; y < 5.0f; y += 0.1f)
00887 for (float x = 0.05f; x < 5.0f; x += 0.1f)
00888 ASSERT_EQ(octreeB.getVoxelDensityAtPoint (PointXYZ(x, y, z)), static_cast<unsigned int> (1));
00889 }
00890
00891 TEST (PCL, Octree_Pointcloud_Iterator_Test)
00892 {
00893
00894
00895 PointCloud<PointXYZ>::Ptr cloudIn (new PointCloud<PointXYZ> ());
00896
00897 for (float z = 0.05f; z < 7.0f; z += 0.1f)
00898 for (float y = 0.05f; y < 7.0f; y += 0.1f)
00899 for (float x = 0.05f; x < 7.0f; x += 0.1f)
00900 cloudIn->push_back (PointXYZ (x, y, z));
00901
00902 cloudIn->width = static_cast<uint32_t> (cloudIn->points.size ());
00903 cloudIn->height = 1;
00904
00905 OctreePointCloud<PointXYZ> octreeA (1.0f);
00906
00907
00908 octreeA.setInputCloud (cloudIn);
00909 octreeA.addPointsFromInputCloud ();
00910
00911
00912 OctreePointCloud<PointXYZ>::LeafNodeIterator it1 (octreeA);
00913
00914 std::vector<int> indexVector;
00915 unsigned int leafNodeCounter = 0;
00916
00917
00918 ++it1;
00919 it1.getData (indexVector);
00920 leafNodeCounter++;
00921
00922
00923 it1++;
00924 it1.getData (indexVector);
00925 leafNodeCounter++;
00926
00927 while (*++it1)
00928 {
00929 it1.getData (indexVector);
00930 leafNodeCounter++;
00931 }
00932
00933 ASSERT_EQ(indexVector.size(), cloudIn->points.size ());
00934 ASSERT_EQ(leafNodeCounter, octreeA.getLeafCount());
00935
00936 OctreePointCloud<PointXYZ>::Iterator it2 (octreeA);
00937
00938 unsigned int traversCounter = 0;
00939 while (*++it2)
00940 {
00941 traversCounter++;
00942 }
00943
00944 ASSERT_EQ(traversCounter > octreeA.getLeafCount() + octreeA.getBranchCount(), true);
00945
00946
00947
00948 OctreePointCloud<PointXYZ>::BreadthFirstIterator bfIt (octreeA);
00949
00950 unsigned int lastDepth = 0;
00951 unsigned int branchNodeCount = 1;
00952 unsigned int leafNodeCount = 0;
00953
00954 bool leafNodeVisited = false;
00955
00956 while (*++bfIt)
00957 {
00958
00959 ASSERT_EQ( bfIt.getCurrentOctreeDepth()>=lastDepth, true);
00960 lastDepth = bfIt.getCurrentOctreeDepth ();
00961
00962 if (bfIt.isBranchNode ())
00963 {
00964 branchNodeCount++;
00965
00966 ASSERT_EQ( leafNodeVisited, false);
00967 }
00968
00969 if (bfIt.isLeafNode ())
00970 {
00971 leafNodeCount++;
00972 leafNodeVisited = true;
00973 }
00974 }
00975
00976
00977 ASSERT_EQ( leafNodeCount, octreeA.getLeafCount());
00978 ASSERT_EQ( branchNodeCount, octreeA.getBranchCount());
00979
00980 }
00981
00982 TEST(PCL, Octree_Pointcloud_Occupancy_Test)
00983 {
00984 const unsigned int test_runs = 100;
00985 unsigned int test_id;
00986
00987
00988
00989 PointCloud<PointXYZ>::Ptr cloudIn (new PointCloud<PointXYZ> ());
00990
00991 OctreePointCloudOccupancy<PointXYZ> octree (0.00001f);
00992
00993 size_t i;
00994
00995 srand (static_cast<unsigned int> (time (NULL)));
00996
00997 for (test_id = 0; test_id < test_runs; test_id++)
00998 {
00999
01000 cloudIn->width = 1000;
01001 cloudIn->height = 1;
01002 cloudIn->points.resize (cloudIn->width * cloudIn->height);
01003
01004
01005 for (i = 0; i < 1000; i++)
01006 {
01007 cloudIn->points[i] = PointXYZ (static_cast<float> (5.0 * rand () / RAND_MAX),
01008 static_cast<float> (10.0 * rand () / RAND_MAX),
01009 static_cast<float> (10.0 * rand () / RAND_MAX));
01010 }
01011
01012
01013 octree.setInputCloud (cloudIn);
01014 octree.addPointsFromInputCloud ();
01015
01016
01017 for (i = 0; i < 1000; i++)
01018 {
01019 ASSERT_EQ(octree.isVoxelOccupiedAtPoint(cloudIn->points[i]), true);
01020 octree.deleteVoxelAtPoint (cloudIn->points[i]);
01021 ASSERT_EQ(octree.isVoxelOccupiedAtPoint(cloudIn->points[i]), false);
01022 }
01023
01024 }
01025
01026 }
01027
01028 TEST (PCL, Octree_Pointcloud_Change_Detector_Test)
01029 {
01030
01031
01032 PointCloud<PointXYZ>::Ptr cloudIn (new PointCloud<PointXYZ> ());
01033
01034 OctreePointCloudChangeDetector<PointXYZ> octree (0.01f);
01035
01036 size_t i;
01037
01038 srand (static_cast<unsigned int> (time (NULL)));
01039
01040 cloudIn->width = 1000;
01041 cloudIn->height = 1;
01042 cloudIn->points.resize (cloudIn->width * cloudIn->height);
01043
01044
01045 for (i = 0; i < 1000; i++)
01046 {
01047 cloudIn->points[i] = PointXYZ (static_cast<float> (5.0 * rand () / RAND_MAX),
01048 static_cast<float> (10.0 * rand () / RAND_MAX),
01049 static_cast<float> (10.0 * rand () / RAND_MAX));
01050 }
01051
01052
01053 octree.setInputCloud (cloudIn);
01054
01055
01056 octree.addPointsFromInputCloud ();
01057
01058
01059 octree.switchBuffers ();
01060
01061
01062 octree.addPointsFromInputCloud ();
01063
01064
01065 for (i = 0; i < 1000; i++)
01066 {
01067 octree.addPointToCloud (
01068 PointXYZ (static_cast<float> (100.0 + 5.0 * rand () / RAND_MAX),
01069 static_cast<float> (100.0 + 10.0 * rand () / RAND_MAX),
01070 static_cast<float> (100.0 + 10.0 * rand () / RAND_MAX)),
01071 cloudIn);
01072 }
01073
01074 vector<int> newPointIdxVector;
01075
01076
01077 octree.getPointIndicesFromNewVoxels (newPointIdxVector);
01078
01079
01080 ASSERT_EQ( newPointIdxVector.size(), static_cast<std::size_t> (1000));
01081
01082
01083 for (i = 0; i < 1000; i++)
01084 {
01085 ASSERT_EQ( ( newPointIdxVector [i] >= 1000 ), true);
01086 }
01087
01088 }
01089
01090 TEST (PCL, Octree_Pointcloud_Voxel_Centroid_Test)
01091 {
01092
01093
01094
01095 PointCloud<PointXYZ>::Ptr cloudIn (new PointCloud<PointXYZ> ());
01096
01097 OctreePointCloudVoxelCentroid<PointXYZ> octree (1.0f);
01098 octree.defineBoundingBox (10.0, 10.0, 10.0);
01099
01100 size_t i;
01101
01102 srand (static_cast<unsigned int> (time (NULL)));
01103
01104 cloudIn->width = 10 * 3;
01105 cloudIn->height = 1;
01106 cloudIn->points.resize (cloudIn->width * cloudIn->height);
01107
01108
01109 for (i = 0; i < 10; i++)
01110 {
01111
01112 cloudIn->points[i * 3 + 0] = PointXYZ (static_cast<float> (i) + 0.2f, static_cast<float> (i) + 0.2f, static_cast<float> (i) + 0.2f);
01113 cloudIn->points[i * 3 + 1] = PointXYZ (static_cast<float> (i) + 0.4f, static_cast<float> (i) + 0.4f, static_cast<float> (i) + 0.4f);
01114 cloudIn->points[i * 3 + 2] = PointXYZ (static_cast<float> (i) + 0.6f, static_cast<float> (i) + 0.6f, static_cast<float> (i) + 0.6f);
01115 }
01116
01117
01118 octree.setInputCloud (cloudIn);
01119
01120
01121 octree.addPointsFromInputCloud ();
01122
01123 pcl::PointCloud<PointXYZ>::VectorType voxelCentroids;
01124 octree.getVoxelCentroids (voxelCentroids);
01125
01126
01127 ASSERT_EQ (voxelCentroids.size(), static_cast<std::size_t> (10));
01128
01129
01130 for (i = 0; i < 10; i++)
01131 {
01132 EXPECT_NEAR(voxelCentroids[i].x, static_cast<float> (i)+0.4, 1e-4);
01133 EXPECT_NEAR(voxelCentroids[i].y, static_cast<float> (i)+0.4, 1e-4);
01134 EXPECT_NEAR(voxelCentroids[i].z, static_cast<float> (i)+0.4, 1e-4);
01135 }
01136
01137 }
01138
01139
01140 class prioPointQueueEntry
01141 {
01142 public:
01143 prioPointQueueEntry () : point_ (), pointDistance_ (), pointIdx_ ()
01144 {
01145 }
01146 prioPointQueueEntry (PointXYZ& point_arg, double pointDistance_arg, int pointIdx_arg) :
01147 point_ (point_arg),
01148 pointDistance_ (pointDistance_arg),
01149 pointIdx_ (pointIdx_arg)
01150 {
01151 }
01152
01153 bool
01154 operator< (const prioPointQueueEntry& rhs_arg) const
01155 {
01156 return (this->pointDistance_ < rhs_arg.pointDistance_);
01157 }
01158
01159 PointXYZ point_;
01160 double pointDistance_;
01161 int pointIdx_;
01162
01163 };
01164
01165 TEST (PCL, Octree_Pointcloud_Nearest_K_Neighbour_Search)
01166 {
01167
01168 const unsigned int test_runs = 10;
01169 unsigned int test_id;
01170
01171
01172 PointCloud<PointXYZ>::Ptr cloudIn (new PointCloud<PointXYZ> ());
01173
01174 size_t i;
01175
01176 srand (static_cast<unsigned int> (time (NULL)));
01177
01178 unsigned int K;
01179
01180 std::priority_queue<prioPointQueueEntry, pcl::PointCloud<prioPointQueueEntry>::VectorType> pointCandidates;
01181
01182
01183 OctreePointCloudSearch<PointXYZ> octree (0.1);
01184 octree.setInputCloud (cloudIn);
01185
01186 std::vector<int> k_indices;
01187 std::vector<float> k_sqr_distances;
01188
01189 std::vector<int> k_indices_bruteforce;
01190 std::vector<float> k_sqr_distances_bruteforce;
01191
01192 for (test_id = 0; test_id < test_runs; test_id++)
01193 {
01194
01195
01196 PointXYZ searchPoint (static_cast<float> (10.0 * rand () / RAND_MAX),
01197 static_cast<float> (10.0 * rand () / RAND_MAX),
01198 static_cast<float> (10.0 * rand () / RAND_MAX));
01199
01200 K = 1 + rand () % 10;
01201
01202
01203 cloudIn->width = 1000;
01204 cloudIn->height = 1;
01205 cloudIn->points.resize (cloudIn->width * cloudIn->height);
01206 for (i = 0; i < 1000; i++)
01207 {
01208 cloudIn->points[i] = PointXYZ (static_cast<float> (5.0 * rand () / RAND_MAX),
01209 static_cast<float> (10.0 * rand () / RAND_MAX),
01210 static_cast<float> (10.0 * rand () / RAND_MAX));
01211 }
01212
01213 double pointDist;
01214
01215 k_indices.clear ();
01216 k_sqr_distances.clear ();
01217
01218 k_indices_bruteforce.clear ();
01219 k_sqr_distances_bruteforce.clear ();
01220
01221
01222 for (i = 0; i < cloudIn->points.size (); i++)
01223 {
01224 pointDist = ((cloudIn->points[i].x - searchPoint.x) * (cloudIn->points[i].x - searchPoint.x)
01225 + (cloudIn->points[i].y - searchPoint.y) * (cloudIn->points[i].y - searchPoint.y)
01226 + (cloudIn->points[i].z - searchPoint.z) * (cloudIn->points[i].z - searchPoint.z));
01227
01228 prioPointQueueEntry pointEntry (cloudIn->points[i], pointDist, static_cast<int> (i));
01229
01230 pointCandidates.push (pointEntry);
01231 }
01232
01233
01234 while (pointCandidates.size () > K)
01235 pointCandidates.pop ();
01236
01237
01238 unsigned idx = static_cast<unsigned> (pointCandidates.size ());
01239 k_indices_bruteforce.resize (idx);
01240 k_sqr_distances_bruteforce.resize (idx);
01241 while (pointCandidates.size ())
01242 {
01243 --idx;
01244 k_indices_bruteforce [idx] = pointCandidates.top ().pointIdx_;
01245 k_sqr_distances_bruteforce [idx] = static_cast<float> (pointCandidates.top ().pointDistance_);
01246
01247 pointCandidates.pop ();
01248 }
01249
01250
01251 octree.deleteTree ();
01252 octree.addPointsFromInputCloud ();
01253 octree.nearestKSearch (searchPoint, static_cast<int> (K), k_indices, k_sqr_distances);
01254
01255 ASSERT_EQ( k_indices.size(), k_indices_bruteforce.size());
01256
01257
01258 i = 0;
01259 while (k_indices_bruteforce.size ())
01260 {
01261 ASSERT_EQ( k_indices.back(), k_indices_bruteforce.back());
01262 EXPECT_NEAR(k_sqr_distances.back(), k_sqr_distances_bruteforce.back(), 1e-4);
01263
01264 k_indices_bruteforce.pop_back ();
01265 k_indices.pop_back ();
01266
01267 k_sqr_distances_bruteforce.pop_back ();
01268 k_sqr_distances.pop_back ();
01269
01270 }
01271
01272 }
01273
01274 }
01275
01276 TEST (PCL, Octree_Pointcloud_Box_Search)
01277 {
01278
01279 const unsigned int test_runs = 30;
01280 unsigned int test_id;
01281
01282
01283 PointCloud<PointXYZ>::Ptr cloudIn (new PointCloud<PointXYZ> ());
01284
01285 size_t i;
01286
01287 srand (static_cast<unsigned int> (time (NULL)));
01288
01289
01290 OctreePointCloudSearch<PointXYZ> octree (1);
01291 octree.setInputCloud (cloudIn);
01292
01293 for (test_id = 0; test_id < test_runs; test_id++)
01294 {
01295 std::vector<int> k_indices;
01296
01297
01298 cloudIn->width = 300;
01299 cloudIn->height = 1;
01300 cloudIn->points.resize (cloudIn->width * cloudIn->height);
01301 for (i = 0; i < cloudIn->points.size(); i++)
01302 {
01303 cloudIn->points[i] = PointXYZ (static_cast<float> (10.0 * rand () / RAND_MAX),
01304 static_cast<float> (10.0 * rand () / RAND_MAX),
01305 static_cast<float> (10.0 * rand () / RAND_MAX));
01306 }
01307
01308
01309
01310 octree.deleteTree ();
01311 octree.addPointsFromInputCloud ();
01312
01313
01314
01315 Eigen::Vector3f lowerBoxCorner (static_cast<float> (4.0 * rand () / RAND_MAX),
01316 static_cast<float> (4.0 * rand () / RAND_MAX),
01317 static_cast<float> (4.0 * rand () / RAND_MAX));
01318 Eigen::Vector3f upperBoxCorner (static_cast<float> (5.0 + 4.0 * rand () / RAND_MAX),
01319 static_cast<float> (5.0 + 4.0 * rand () / RAND_MAX),
01320 static_cast<float> (5.0 + 4.0 * rand () / RAND_MAX));
01321
01322 octree.boxSearch (lowerBoxCorner, upperBoxCorner, k_indices);
01323
01324
01325 for (i = 0; i < 300; i++)
01326 {
01327 std::size_t j;
01328 bool inBox;
01329 bool idxInResults;
01330 const PointXYZ& pt = cloudIn->points[i];
01331
01332 inBox = (pt.x > lowerBoxCorner (0)) && (pt.x < upperBoxCorner (0)) &&
01333 (pt.y > lowerBoxCorner (1)) && (pt.y < upperBoxCorner (1)) &&
01334 (pt.z > lowerBoxCorner (2)) && (pt.z < upperBoxCorner (2));
01335
01336 idxInResults = false;
01337 for (j = 0; (j < k_indices.size ()) && (!idxInResults); ++j)
01338 {
01339 if (i == static_cast<unsigned int> (k_indices[j]))
01340 idxInResults = true;
01341 }
01342
01343 ASSERT_EQ(idxInResults, inBox);
01344
01345 }
01346
01347 }
01348 }
01349
01350 TEST(PCL, Octree_Pointcloud_Approx_Nearest_Neighbour_Search)
01351 {
01352 const unsigned int test_runs = 100;
01353 unsigned int test_id;
01354
01355 unsigned int bestMatchCount = 0;
01356
01357
01358 PointCloud<PointXYZ>::Ptr cloudIn (new PointCloud<PointXYZ> ());
01359
01360 size_t i;
01361 srand (static_cast<unsigned int> (time (NULL)));
01362
01363 double voxelResolution = 0.1;
01364
01365
01366 OctreePointCloudSearch<PointXYZ> octree (voxelResolution);
01367 octree.setInputCloud (cloudIn);
01368
01369 for (test_id = 0; test_id < test_runs; test_id++)
01370 {
01371
01372
01373 PointXYZ searchPoint (static_cast<float> (10.0 * rand () / RAND_MAX),
01374 static_cast<float> (10.0 * rand () / RAND_MAX),
01375 static_cast<float> (10.0 * rand () / RAND_MAX));
01376
01377
01378 cloudIn->width = 1000;
01379 cloudIn->height = 1;
01380 cloudIn->points.resize (cloudIn->width * cloudIn->height);
01381 for (i = 0; i < 1000; i++)
01382 {
01383 cloudIn->points[i] = PointXYZ (static_cast<float> (5.0 * rand () / RAND_MAX),
01384 static_cast<float> (10.0 * rand () / RAND_MAX),
01385 static_cast<float> (10.0 * rand () / RAND_MAX));
01386 }
01387
01388
01389 double pointDist;
01390 double BFdistance = numeric_limits<double>::max ();
01391 int BFindex = 0;
01392
01393 for (i = 0; i < cloudIn->points.size (); i++)
01394 {
01395 pointDist = ((cloudIn->points[i].x - searchPoint.x) * (cloudIn->points[i].x - searchPoint.x)
01396 + (cloudIn->points[i].y - searchPoint.y) * (cloudIn->points[i].y - searchPoint.y)
01397 + (cloudIn->points[i].z - searchPoint.z) * (cloudIn->points[i].z - searchPoint.z));
01398
01399 if (pointDist < BFdistance)
01400 {
01401 BFindex = static_cast<int> (i);
01402 BFdistance = pointDist;
01403 }
01404
01405 }
01406
01407 int ANNindex;
01408 float ANNdistance;
01409
01410
01411 octree.deleteTree ();
01412 octree.addPointsFromInputCloud ();
01413 octree.approxNearestSearch (searchPoint, ANNindex, ANNdistance);
01414
01415 if (BFindex == ANNindex)
01416 {
01417 EXPECT_NEAR(ANNdistance, BFdistance, 1e-4);
01418 bestMatchCount++;
01419 }
01420
01421 }
01422
01423
01424 ASSERT_EQ( (bestMatchCount > 0), true);
01425
01426 }
01427
01428 TEST (PCL, Octree_Pointcloud_Neighbours_Within_Radius_Search)
01429 {
01430
01431 const unsigned int test_runs = 100;
01432 unsigned int test_id;
01433
01434
01435 PointCloud<PointXYZ>::Ptr cloudIn (new PointCloud<PointXYZ> ());
01436 PointCloud<PointXYZ>::Ptr cloudOut (new PointCloud<PointXYZ> ());
01437
01438 size_t i;
01439
01440 srand (static_cast<unsigned int> (time (NULL)));
01441
01442 for (test_id = 0; test_id < test_runs; test_id++)
01443 {
01444
01445 PointXYZ searchPoint (static_cast<float> (10.0 * rand () / RAND_MAX),
01446 static_cast<float> (10.0 * rand () / RAND_MAX),
01447 static_cast<float> (10.0 * rand () / RAND_MAX));
01448
01449 cloudIn->width = 1000;
01450 cloudIn->height = 1;
01451 cloudIn->points.resize (cloudIn->width * cloudIn->height);
01452
01453
01454 for (i = 0; i < 1000; i++)
01455 {
01456 cloudIn->points[i] = PointXYZ (static_cast<float> (10.0 * rand () / RAND_MAX),
01457 static_cast<float> (10.0 * rand () / RAND_MAX),
01458 static_cast<float> (5.0 * rand () / RAND_MAX));
01459 }
01460
01461 OctreePointCloudSearch<PointXYZ> octree (0.001);
01462
01463
01464 octree.setInputCloud (cloudIn);
01465 octree.addPointsFromInputCloud ();
01466
01467 double pointDist;
01468 double searchRadius = 5.0 * static_cast<float> (rand () / RAND_MAX);
01469
01470
01471 vector<int> cloudSearchBruteforce;
01472 for (i = 0; i < cloudIn->points.size (); i++)
01473 {
01474 pointDist = sqrt (
01475 (cloudIn->points[i].x - searchPoint.x) * (cloudIn->points[i].x - searchPoint.x)
01476 + (cloudIn->points[i].y - searchPoint.y) * (cloudIn->points[i].y - searchPoint.y)
01477 + (cloudIn->points[i].z - searchPoint.z) * (cloudIn->points[i].z - searchPoint.z));
01478
01479 if (pointDist <= searchRadius)
01480 {
01481
01482 cloudSearchBruteforce.push_back (static_cast<int> (i));
01483 }
01484 }
01485
01486 vector<int> cloudNWRSearch;
01487 vector<float> cloudNWRRadius;
01488
01489
01490 octree.radiusSearch (searchPoint, searchRadius, cloudNWRSearch, cloudNWRRadius);
01491
01492 ASSERT_EQ( cloudNWRRadius.size(), cloudSearchBruteforce.size());
01493
01494
01495 std::vector<int>::const_iterator current = cloudNWRSearch.begin ();
01496 while (current != cloudNWRSearch.end ())
01497 {
01498 pointDist = sqrt (
01499 (cloudIn->points[*current].x - searchPoint.x) * (cloudIn->points[*current].x - searchPoint.x)
01500 + (cloudIn->points[*current].y - searchPoint.y) * (cloudIn->points[*current].y - searchPoint.y)
01501 + (cloudIn->points[*current].z - searchPoint.z) * (cloudIn->points[*current].z - searchPoint.z));
01502
01503 ASSERT_EQ( (pointDist<=searchRadius), true);
01504
01505 ++current;
01506 }
01507
01508
01509 octree.radiusSearch (searchPoint, searchRadius, cloudNWRSearch, cloudNWRRadius, 5);
01510
01511 ASSERT_EQ( cloudNWRRadius.size() <= 5, true);
01512
01513 }
01514
01515 }
01516
01517 TEST (PCL, Octree_Pointcloud_Ray_Traversal)
01518 {
01519
01520 const unsigned int test_runs = 100;
01521 unsigned int test_id;
01522
01523
01524 PointCloud<PointXYZ>::Ptr cloudIn (new PointCloud<PointXYZ> ());
01525
01526 octree::OctreePointCloudSearch<PointXYZ> octree_search (0.02f);
01527
01528
01529 pcl::PointCloud<pcl::PointXYZ>::VectorType voxelsInRay, voxelsInRay2;
01530
01531
01532 std::vector<int> indicesInRay, indicesInRay2;
01533
01534 srand (static_cast<unsigned int> (time (NULL)));
01535
01536 for (test_id = 0; test_id < test_runs; test_id++)
01537 {
01538
01539 octree_search.deleteTree ();
01540
01541 octree_search.defineBoundingBox (0.0, 0.0, 0.0, 10.0, 10.0, 10.0);
01542
01543 cloudIn->width = 4;
01544 cloudIn->height = 1;
01545 cloudIn->points.resize (cloudIn->width * cloudIn->height);
01546
01547 Eigen::Vector3f p (static_cast<float> (10.0 * rand () / RAND_MAX),
01548 static_cast<float> (10.0 * rand () / RAND_MAX),
01549 static_cast<float> (10.0 * rand () / RAND_MAX));
01550
01551
01552 Eigen::Vector3f o (static_cast<float> (12.0 * rand () / RAND_MAX),
01553 static_cast<float> (12.0 * rand () / RAND_MAX),
01554 static_cast<float> (12.0 * rand () / RAND_MAX));
01555
01556 cloudIn->points[0] = pcl::PointXYZ (p[0], p[1], p[2]);
01557
01558
01559 Eigen::Vector3f dir (p - o);
01560
01561 float tmin = 1.0;
01562 for (unsigned int j = 1; j < 4; j++)
01563 {
01564 tmin = tmin - 0.25f;
01565 Eigen::Vector3f n_p = o + (tmin * dir);
01566 cloudIn->points[j] = pcl::PointXYZ (n_p[0], n_p[1], n_p[2]);
01567 }
01568
01569
01570 octree_search.setInputCloud (cloudIn);
01571 octree_search.addPointsFromInputCloud ();
01572
01573 octree_search.getIntersectedVoxelCenters (o, dir, voxelsInRay);
01574 octree_search.getIntersectedVoxelIndices (o, dir, indicesInRay);
01575
01576
01577 ASSERT_EQ( voxelsInRay.size (), cloudIn->points.size ());
01578
01579 ASSERT_EQ( indicesInRay.size (), cloudIn->points.size ());
01580
01581 octree_search.getIntersectedVoxelCenters (o, dir, voxelsInRay2, 1);
01582 octree_search.getIntersectedVoxelIndices (o, dir, indicesInRay2, 1);
01583
01584
01585 ASSERT_EQ( voxelsInRay2.size (), 1u );
01586 ASSERT_EQ( indicesInRay2.size (), 1u );
01587
01588
01589 pcl::PointXYZ pt = cloudIn->points[ indicesInRay2[0] ];
01590 Eigen::Vector3f d = Eigen::Vector3f (pt.x, pt.y, pt.z) - o;
01591 float min_dist = d.norm ();
01592
01593 for (unsigned int i = 0; i < cloudIn->width * cloudIn->height; i++) {
01594 pt = cloudIn->points[i];
01595 d = Eigen::Vector3f (pt.x, pt.y, pt.z) - o;
01596 ASSERT_GE( d.norm (), min_dist );
01597 }
01598
01599 }
01600
01601 }
01602
01603
01604 int
01605 main (int argc, char** argv)
01606 {
01607 testing::InitGoogleTest (&argc, argv);
01608 return (RUN_ALL_TESTS ());
01609 }
01610